Title:
Self-Healing Efficiency of Concretes through Permeability to Chlorides
Author(s):
C. F. Hollmann, L. Zucchetti, D. C. C. Dal Molin, and A. B. Masuero
Publication:
Materials Journal
Volume:
120
Issue:
5
Appears on pages(s):
79-88
Keywords:
chloride penetration resistance; crystalline admixture (CA); self-healing; service life prediction; silica fume.
DOI:
10.14359/51738892
Date:
9/1/2023
Abstract:
Self-healing is a process by which concrete is able to recover its properties after the appearance of cracks, which can improve mechanical properties and durability and reduce the permeability of concrete. Self-healing materials can be incorporated into concrete to contribute to crack closure. This study aims to evaluate the influence of crystalline admixtures and silica fume on the
self-healing of concrete cracks. The rapid chloride penetration test was performed on cracked and uncracked samples, from which it was possible to estimate the service life of concretes. The concretes were characterized by tests of compressive strength and water absorption by capillarity. The use of crystalline admixtures did not have a negative influence on concrete properties, but did not favor the chloride penetration resistance. The concrete with silica fume showed the lowest charge passed and highest values of estimated service life.
Related References:
1. Van Tittelboom, K., and De Belie, N., “Self-Healing in Cementitious Materials—A Review,” Materials (Basel), V. 6, No. 6, June 2013, pp. 2182-2217. doi: 10.3390/ma6062182
2. de Rooij, M.; Van Tittelboom, K.; De Belie, N.; and Schlangen, E., eds., Self-Healing Phenomena in Cement-Based Materials: State-of-the-Art Report of RILEM Technical Committee 221-SHC: Self-Healing Phenomena in Cement-Based Materials, Springer, Dordrecht, the Netherlands, 2013.
3. Kan, L.-L.; Lv, J.-W.; Duan, B.-B.; and Wu, M., “Self-Healing of Engineered Geopolymer Composites Prepared by Fly Ash and Metakaolin,” Cement and Concrete Research, V. 125, Nov. 2019, Article No. 105895. doi: 10.1016/j.cemconres.2019.105895
4. Ravitheja, A.; Reddy, T. C. S.; and Sashidhar, C., “Self-Healing Concrete with Crystalline Admixture—A Review,” Journal of Wuhan University of Technology-Materials Science Edition, V. 34, No. 5, Oct. 2019, pp. 1143-1154. doi: 10.1007/s11595-019-2171-2
5. Azarsa, P.; Gupta, R.; and Biparva, A., “Assessment of Self-Healing and Durability Parameters of Concretes Incorporating Crystalline Admixtures and Portland Limestone Cement,” Cement and Concrete Composites, V. 99, May 2019, pp. 17-31. doi: 10.1016/j.cemconcomp.2019.02.017
6. Borg, R. B.; Cuenca, E.; Gastaldo Brac, E. M.; and Ferrara, L., “Crack Sealing Capacity in Chloride-Rich Environments of Mortars Containing Different Cement Substitutes and Crystalline Admixtures,” Journal of Sustainable Cement-Based Materials, V. 7, No. 3, 2018, pp. 141-159. doi: 10.1080/21650373.2017.1411297
7. Reddy, T. C. S.; Ravitheja, A.; and Sashidhar, C., “Micromechanical Properties of Self-Healing Concrete with Crystalline Admixture and Silica Fume,” ACI Materials Journal, V. 117, No. 3, May 2020, pp. 63-74. doi: 10.14359/51722395
8. Roig-Flores, M.; Moscato, S.; Serna, P.; and Ferrara, L., “Self-Healing Capability of Concrete with Crystalline Admixtures in Different Environments,” Construction and Building Materials, V. 86, July 2015, pp. 1-11. doi: 10.1016/j.conbuildmat.2015.03.091
9. Cuenca, E.; Tejedor, A.; and Ferrara, L., “A Methodology to Assess Crack-Sealing Effectiveness of Crystalline Admixtures under Repeated Cracking-Healing Cycles,” Construction and Building Materials, V. 179, Aug. 2018, pp. 619-632. doi: 10.1016/j.conbuildmat.2018.05.261
10. Escoffres, P.; Desmettre, C.; and Charron, J.-P., “Effect of a Crystalline Admixture on the Self-Healing Capability of High-Performance Fiber Reinforced Concretes in Service Conditions,” Construction and Building Materials, V. 173, June 2018, pp. 763-774. doi: 10.1016/j.conbuildmat.2018.04.003
11. Sisomphon, K.; Copuroglu, O.; and Koenders, E. A. B., “Self-Healing of Surface Cracks in Mortars with Expansive Additive and Crystalline Additive,” Cement and Concrete Composites, V. 34, No. 4, Apr. 2012, pp. 566-574. doi: 10.1016/j.cemconcomp.2012.01.005
12. Wang, X.; Fang, C.; Li, D.; Han, N.; and Xing, F., “A Self-Healing Cementitious Composite with Mineral Admixtures and Built-in Carbonate,” Cement and Concrete Composites, V. 92, Sept. 2018, pp. 216-229. doi: 10.1016/j.cemconcomp.2018.05.013
13. ACI Committee 212, “Report on Chemical Admixtures for Concrete (ACI 212.3R-16),” American Concrete Institute, Farmington Hills, MI, 2016, 76 pp.
14. De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; Litina, C.; Miljevic, B.; Otlewska, A.; Ranogajec, J.; Roig-Flores, M.; Paine, K.; Lukowski, P.; Serna, P.; Tulliani, J.-M.; Vucetic, S.; Wang, J.; and Jonkers, H. M., “A Review of Self-Healing Concrete for Damage Management of Structures,” Advanced Materials Interfaces, V. 5, No. 17, Sept. 2018, Article No. 1800074. doi: 10.1002/admi.201800074
15. Moffatt, E. G.; Thomas, M. D. A.; and Fahim, A., “Performance of High-Volume Fly Ash Concrete in Marine Environment,” Cement and Concrete Research, V. 102, Dec. 2017, pp. 127-135. doi: 10.1016/j.cemconres.2017.09.008
16. ASTM C1202-19, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” ASTM International, West Conshohocken, PA, 2019, 8 pp.
17. Banu, S. S.; Karthikeyan, J.; and Jayabalan, P., “Effect of Agro-Waste on Strength and Durability Properties of Concrete,” Construction and Building Materials, V. 258, Oct. 2020, Article No. 120322. doi: 10.1016/j.conbuildmat.2020.120322
18. Sujay, H. M.; Nair, N. A.; Sudarsana Rao, H.; and Sairam, V., “Experimental Study on Durability Characteristics of Composite Fiber Reinforced High-Performance Concrete Incorporating Nanosilica and Ultra Fine Fly Ash,” Construction and Building Materials, V. 262, Nov. 2020, Article No. 120738. doi: 10.1016/j.conbuildmat.2020.120738
19. Zahedi, M.; Jafari, K.; and Rajabipour, F., “Properties and Durability of Concrete Containing Fluidized Bed Combustion (FBC) Fly Ash,” Construction and Building Materials, V. 258, Oct. 2020, Article No. 119663. doi: 10.1016/j.conbuildmat.2020.119663
20. ABNT NBR 11578/1991, “Cimento Portland Composto,” Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil, 1991, 5 pp.
21. ASTM C150/C150M-20, “Standard Specification for Portland Cement,” ASTM International, West Conshohocken, PA, 2020, 9 pp.
22. ABNT NBR NM 67:1998, “Concreto — Determinação da Consistência Pelo Abatimento do Tronco de Cone,” Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil, 1998, 8 pp.
23. ABNT NBR 9833:2008, “Concreto Fresco — Determinação da Massa Específica, do Rendimento e do Teor de Ar Pelo Método Gravimétrico,” Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil, 2008, 11 pp.
24. ABNT NBR 5739:2018, “Concreto — Ensaio de Compressão de Corpos de Prova Cilíndricos,” Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil, 2018, 13 pp.
25. ABNT NBR 9779:2012, “Argamassa e Concreto Endurecidos — Determinação da Absorção de Água por Capilaridade,” Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil, 2012, 3 pp.
26. ABNT NBR 7222:2011, “Concreto e Argamassa — Determinação da Resistência à Tração por Compressão Diametral de Corpos de Prova Cilíndricos,” Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil, 2011, 5 pp.
27. Cappellesso, V.; Silva, D.; Petry, N.; Arndt, J.; Masuero, A.; and Dal Molin, D., “Self-Healing Approach on Early Age Cracked Concretes with Smart Admixture,” Durable Concrete for Infrastructure under Severe Conditions: Smart Admixtures, Self-Responsiveness and Nano-Additions – Proceedings, M. A. Pereira Gomes de Araújo, N. De Belie, and K. Van Tittelboom, eds., Ghent, Belgium, Sept. 2019, 4 pp.
28. Ziegler, F.; Masuero, A. B.; Pagnussat, D. T.; and Dal Molin, D. C. C., “Evaluation of Internal and Superficial Self-Healing of Cracks in Concrete with Crystalline Admixtures,” Materials (Basel), V. 13, No. 21, Nov. 2020, Article No. 4947. doi: 10.3390/ma13214947
29. Berke, N. S., and Hicks, M. C., “Estimating the Life Cycle of Reinforced Concrete Decks and Marine Piles Using Laboratory Diffusion and Corrosion Data,” Corrosion Forms and Control for Infrastructure, ASTM STP 1137, V. Chaker, ed., ASTM International, West Conshohocken, PA, 1992, pp. 207-231.
30. Andrade, C., and Whiting, D., “A Comparison of Chloride Ion Diffusion Coefficients Derived from Concentration Gradients and Non-Steady State Accelerated Ionic Migration,” Materials and Structures, V. 29, No. 8, Oct. 1996, pp. 476-484. doi: 10.1007/BF02486282
31. Helene, P.; Guignone, G.; Vieira, G.; Roncetti, L.; and Moroni, F., “Evaluation of the Chloride Penetration and Service Life of Self-Healing Concretes Activated by Crystalline Catalyst,” IBRACON Structures and Materials Journal, V. 11, No. 3, June 2018, pp. 544-563. doi: 10.1590/s1983-41952018000300007
32. Farias de Medeiros, M. H.; Gobbi, A.; Groenwold, J. A.; and Helene, P., “Previsão da Vida Útil de Concreto Armado de Alta Resistência com Adição de Metacaulim e Sílica Ativa em Ambientes Marinhos,” Revista Escola de Minas, V. 66, No. 1, Jan.-Mar. 2013, pp. 59-65. doi: 10.1590/S0370-44672013000100008
33. Wally, G. B.; Sell, F. K. Jr.; and Magalhães, F. C., “Ensaios Acelerados de Penetração de Cloretos Aplicados à Estimativa do Coeficiente de Difusão do Concreto e à Vida Útil de Estruturas em Ambiente Marinho,” Revista Técnico-Científica do CREA-PR, V. 21, 2019, pp. 1-14. doi: 10.4322/2526-7248.027
34. Silvestro, L., “Validação de Modelo para Previsão de Vida Útil de Estruturas de Concreto Armado: Iniciação da Corrosão por Cloretos,” master’s dissertation, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 2018, 158 pp. (in Portuguese)
35. Ziegler, F., “Avaliação da Autocicatrização de Fissuras em Concretos com Aditivos Cristalizantes,” master’s dissertation, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 2020, 187 pp. (in Portuguese)
36. Helene, P., “Contribuição ao Estudo da Corrosão em Armaduras de Concreto Armado,” thesis, University of São Paulo, São Paulo, SP, Brazil, 1993, 248 pp. (in Portuguese)
37. Ibrahim, M., and Issa, M., “Evaluation of Chloride and Water Penetration in Concrete with Cement Containing Limestone and IPA,” Construction and Building Materials, V. 129, Dec. 2016, pp. 278-288. doi: 10.1016/j.conbuildmat.2016.10.085
38. Cappellesso, V. G.; dos Santos Petry, N.; Dal Molin, D. C. C.; and Masuero, A. B., “Use of Crystalline Waterproofing to Reduce Capillary Porosity in Concrete,” Journal of Building Pathology and Rehabilitation, V. 1, No. 1, Dec. 2016, Article No. 9. doi: 10.1007/s41024-016-0012-7
39. Pazderka, J., and Hájková, E., “Crystalline Admixtures and Their Effect on Selected Properties of Concrete,” Acta Polytechnica, V. 56, No. 4, 2016, pp. 306-311. doi: 10.14311/AP.2016.56.0306
40. Jo, B. W.; Sikandar, M. A.; Baloch, Z.; and Khan, R. M. A., “Effect of Incorporation of Self-Healing Admixture (SHA) on Physical and Mechanical Properties of Mortars,” Journal of Ceramic Processing Research, V. 16, No. S1, Nov. 2015, pp. 138-143.
41. de Castro, A. L., and Pandolfelli, V. C., “Revisão: Conceitos de Dispersão e Empacotamento de Partículas para a Produção de Concretos Especiais Aplicados na Construção Civil,” Cerâmica, V. 55, Mar. 2009, pp. 18-32. doi: 10.1590/S0366-69132009000100003
42. Thomas, R. J.; Ariyachandra, E.; Lezama, D.; and Peethamparan, S., “Comparison of Chloride Permeability Methods for Alkali-Activated Concrete,” Construction and Building Materials, V. 165, Mar. 2018, pp. 104-111. doi: 10.1016/j.conbuildmat.2018.01.016
43. Şahmaran, M.; Yıldırım, G.; Noori, R.; Ozbay, E.; and Lachemi, M., “Repeatability and Pervasiveness of Self-Healing in Engineered Cementitious Composites,” ACI Materials Journal, V. 112, No. 4, July-Aug. 2015, pp. 513-522. doi: 10.14359/51687308
44. Kan, L.-L.; Shi, H.-S.; Sakulich, A. R.; and Li, V. C., “Self-Healing Characterization of Engineered Cementitious Composite Materials,” ACI Materials Journal, V. 107, No. 6, Nov.-Dec. 2010, pp. 617-624. doi: 10.14359/51664049
45. Lee, H. X. D.; Wong, H. S.; and Buenfeld, N. R., “Self-Sealing of Cracks in Concrete Using Superabsorbent Polymers,” Cement and Concrete Research, V. 79, Jan. 2016, pp. 194-208. doi: 10.1016/j.cemconres.2015.09.008
46. Otieno, M.; Beushausen, H.; and Alexander, M., “Chloride-Induced Corrosion of Steel in Cracked Concrete – Part I: Experimental Studies under Accelerated and Natural Marine Environments,” Cement and Concrete Research, V. 79, Jan. 2016, pp. 373-385. doi: 10.1016/j.cemconres.2015.08.009
47. Cuenca, E.; Cislaghi, G.; Puricelli, M.; and Ferrara, L., “Influence of Self-Healing Stimulated via Crystalline Admixtures on Chloride Penetration,” Durability and Sustainability of Concrete Structures, SP-326, V. Falikman, R. Realfonzo, L. Coppola, P. Hàjek, and P. Riva, eds., American Concrete Institute, Farmington Hills, MI, 2018, 10 pp. doi: 10.14359/51710987
48. de Araújo Vasconcelos, M. C., “Avaliação da Atividade Pozolânica da Cinza do Bagaço de Cana-de-Açúcar Utilizando Métodos Físicos,” master’s dissertation, Federal University of Pernambuco, Recife, PE, Brazil, 2013, 134 pp. (in Portuguese)
49. Ramezanianpour, A. A.; Pilvar, A.; Mahdikhani, M.; and Moodi, F., “Practical Evaluation of Relationship between Concrete Resistivity, Water Penetration, Rapid Chloride Penetration and Compressive Strength,” Construction and Building Materials, V. 25, No. 5, May 2011, pp. 2472-2479. doi: 10.1016/j.conbuildmat.2010.11.069
50. ABNT NBR 6118:2014, “Projeto de Estruturas de Concreto – Procedimento,” Brazilian Association of Technical Standards, Rio de Janeiro, RJ, Brazil, 2014, 238 pp.
51. Cappellesso, V. G., “Avaliação da Autocicatrização de Fissuras em Concretos com Diferentes Cimentos,” master’s dissertation, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 2018, 295 pp. (in Portuguese)