Kappaphycus alvarezii Seaweed as Novel Viscosity- Modifying Admixture for Cement-Based Materials

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Kappaphycus alvarezii Seaweed as Novel Viscosity- Modifying Admixture for Cement-Based Materials

Author(s): Asma Boukhatem, Kamal Bouarab, and Ammar Yahia

Publication: Materials Journal

Volume: 120

Issue: 4

Appears on pages(s): 15-28

Keywords: cement suspensions; compressive strength; hydration kinetics; kappa (κ)-carrageenan; Kappaphycus alvarezii (K. alvarezii); rheology; viscosity-modifying admixtures (VMAs)

DOI: 10.14359/51738805

Date: 7/1/2023

Abstract:
The effect of different conditioning and processing parameters of Kappaphycus alvarezii (K. alvarezii) seaweed solutions—such as their dosage, heating temperature, and pre-hydration method on the rheological behavior, hydration kinetics, and compressive strength of cement suspensions—was evaluated. The use of marine K. alvarezii seaweed in fluid cement matrixes could be an excellent alternative for a wide range of existing viscosity-modifying admixtures (VMAs) given its environmental and economic advantages. The use of K. alvarezii increased the yield stress, plastic viscosity, and rigidity of cement suspensions. This was not always the case when conventional VMAs were used, which shows the effectiveness of K. alvarezii as a VMA. On the other hand, incorporating a 0.5% dosage of K. alvarezii resulted in comparable yield stress and plastic viscosity values compared to (κ)-carrageenan, which confirms the feasibility of using K. alvarezii instead of (κ)-carrageenan as a VMA. Unlike (κ)-carrageenan, the use of K. alvarezii did not increase the dormant period of cement suspensions, which is very interesting in terms of compatibility between this new VMA and cement. The use of K. alvarezii generally showed no significant effect on the strength development of the cement suspensions compared to the reference mixture. This validates the feasibility of using K. alvarezii seaweed as a VMA.

Related References:

1. Yahia, A.; Bouarab, K.; Boukhatem, A.; and Mostafa, A., “Use of Carrageenan as a Viscosity-Modifying Admixture in a Flowable Cementitious Suspensions,” International Patent No. WO 2022/104469 A1, 2022, 137 pp.

2. Boukhatem, A.; Bouarab, K.; and Yahia, A., “Kappa (κ)-Carrageenan as a Novel Viscosity-Modifying Admixture for Cement-Based Materials – Effect on Rheology, Stability, and Strength Development,” Cement and Concrete Composites, V. 124, Nov. 2021, Article No. 104221. doi: 10.1016/j.cemconcomp.2021.104221

3. Boukhatem, A.; Bouarab, K.; and Yahia, A., “Effect of (κ)- and (ι)-Carrageenans on Rheology and Strength Development of Cement-Based Materials,” ACI Materials Journal, V. 119, No. 1, Jan. 2022, pp. 207-219.

4. ACI Committee 237, “Self-Consolidating Concrete (ACI 237R-07) (Reapproved 2019),” American Concrete Institute, Farmington Hills, MI, 2007, 30 pp.

5. Khayat, K. H., “Effects of Antiwashout Admixtures on Fresh Concrete Properties,” ACI Materials Journal, V. 92, No. 2, Mar.-Apr. 1995, pp. 164-171.

6. Khayat, K. H., “Viscosity-Enhancing Admixtures for Cement-Based Materials – An Overview,” Cement and Concrete Composites, V. 20, No. 2-3, 1998, pp. 171-188. doi: 10.1016/S0958-9465(98)80006-1

7. Khayat, K. H., and Yahia, A., “Effect of Welan Gum-High-Range Water Reducer Combinations on Rheology of Cement Grout,” ACI Materials Journal, V. 94, No. 5, Sept.-Oct. 1997, pp. 365-372.

8. Yahia, A., and Khayat, K. H., “Analytical Models for Estimating Yield Stress of High-Performance Pseudoplastic Grout,” Cement and Concrete Research, V. 31, No. 5, May 2001, pp. 731-738. doi: 10.1016/S0008-8846(01)00476-8

9. Kawai, T., “Non-Dispersible Underwater Concrete Using Polymers,” The Production, Performance & Potential of Polymers in Concrete: ICPIC 87: 5th International Congress on Polymers in Concrete, B. W. Staynes, ed., Brighton, UK, 1987, pp. 385-390.

10. Nehdi, M., “Why Some Carbonate Fillers Cause Rapid Increases of Viscosity in Dispersed Cement-Based Materials,” Cement and Concrete Research, V. 30, No. 10, Oct. 2000, pp. 1663-1669. doi: 10.1016/S0008-8846(00)00353-7

11. Cronshaw, J.; Myers, A.; and Preston, R. D., “A Chemical and Physical Investigation of the Cell Walls of Some Marine Algae,” Biochimica et Biophysica Acta, V. 27, 1958, pp. 89-103. doi: 10.1016/0006-3002(58)90295-6

12. Davis, T. A.; Volesky, B.; and Mucci, A., “A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae,” Water Research, V. 37, No. 18, Nov. 2003, pp. 4311-4330. doi: 10.1016/S0043-1354(03)00293-8

13. Kloareg, B., and Quatrano, R. S., “Structure of the Cell Walls of Marine Algae and Ecophysiological Functions of the Matrix Polysaccharides,” Oceanography and Marine Biology: An Annual Review, V. 26, H. Barnes, ed., CRC Press, London, UK, 1988, pp. 259-315.

14. Kraan, S., “Algal Polysaccharides, Novel Applications and Outlook,” Carbohydrates: Comprehensive Studies on Glycobiology and Glycotechnology, first edition, C.-F. Chang, ed., InTech, Rijeka, Croatia, 2012, pp. 489-532.

15. Imeson, A. P., ed., Thickening and Gelling Agents for Food, Blackie Academic and Professional Publisher, Glasgow, UK, 1992, pp. 1-24.

16. Mishra, V. K.; Temelli, F.; Ooraikul, B.; Shacklock, P. F.; and Craigie, J. S., “Lipids of the Red Alga, Palmaria palmata,” Botanica Marina, V. 36, No. 2, 1993, pp. 169-174. doi: 10.1515/botm.1993.36.2.169

17. Painter, T. J., “Algal Polysaccharides,” The Polysaccharides, G. O. Aspinall, ed., Academic Press, New York, NY, 1983, pp. 195-285.

18. Rees, D. A., “Structure, Conformation, and Mechanism in the Formation of Polysaccharide Gels and Networks,” Advances in Carbohydrate Chemistry and Biochemistry, V. 24, 1969, pp. 267-332. doi: 10.1016/S0065-2318(08)60352-2

19. Rochas, C.; Rinaudo, M.; and Landry, S., “Relation between the Molecular Structure and Mechanical Properties of Carrageenan Gels,” Carbohydrate Polymers, V. 10, No. 2, 1989, pp. 115-127. doi: 10.1016/0144-8617(89)90061-1

20. van de Velde, F.; Pereira, L.; and Rollema, H. S., “The Revised NMR Chemical Shift Data of Carrageenans,” Carbohydrate Research, V. 339, No. 13, Sept. 2004, pp. 2309-2313. doi: 10.1016/j.carres.2004.07.015

21. Pereira, L., and van de Velde, F., “Portuguese Carrageenophytes: Carrageenan Composition and Geographic Distribution of Eight Species (Gigartinales, Rhodophyta),” Carbohydrate Polymers, V. 84, No. 1, Feb. 2011, pp. 614-623. doi: 10.1016/j.carbpol.2010.12.036

22. Whistler, R. L., and BeMiller, J. N., Carbohydrate Chemistry for Food Scientists, Egan Press, St. Paul, MN, 1997, pp. 65.

23. McHugh, D. J., ed., “Production and Utilization of Products from Commercial Seaweeds,” FAO Fisheries Technical Paper No. 288, FAO Fisheries and Aquaculture, Rome, Italy, 1987.

24. Stevenson, T. T., and Furneaux, R. H., “Chemical Methods for the Analysis of Sulphated Galactans from Red Algae,” Carbohydrate Research, V. 210, Mar. 1991, pp. 277-298. doi: 10.1016/0008-6215(91)80129-B

25. Knutsen, S. H.; Myslabodski, D. E.; Larsen, B.; and Usov, A. I., “A Modified System of Nomenclature for Red Algal Galactans,” Botanica Marina, V. 37, No. 2, 1994, pp. 163-169. doi: 10.1515/botm.1994.37.2.163

26. van de Velde, F.; Knutsen, S. H.; Usov, A. I.; Rollema, H. S.; and Cerezo, A. S., “1H and 13C High Resolution NMR Spectroscopy of Carrageenans: Application in Research and Industry,” Trends in Food Science & Technology, V. 13, No. 3, Mar. 2002, pp. 73-92. doi: 10.1016/S0924-2244(02)00066-3

27. Rees, D. A., “Structure, Conformation, and Mechanism in the Formation of Polysaccharide Gels and Networks,” Advances in Carbohydrate Chemistry and Biochemistry, V. 24, 1969, pp. 267-332. doi: 10.1016/S0065-2318(08)60352-2

28. Distantina, S.; Wiratni; Fahrurrozi, M.; and Rochmadi, “Carrageenan Properties Extracted from Eucheuma cottonii, Indonesia,” World Academy of Science, Engineering and Technology, V. 78, 2011, pp. 738-742.

29. León-Martínez, F. M.; Cano-Barrita, P. F. D. J.; Lagunez-Rivera, L.; and Medina-Torres, L., “Study of Nopal Mucilage and Marine Brown Algae Extract as Viscosity-Enhancing Admixtures for Cement Based Materials,” Construction and Building Materials, V. 53, Feb. 2014, pp. 190-202. doi: 10.1016/j.conbuildmat.2013.11.068

30. Aday, A. N.; Osio-Norgaard, J.; Foster, K. E. O.; and Srubar, W. V.  III, “Carrageenan-Based Superabsorbent Biopolymers Mitigate Autogenous Shrinkage in Ordinary Portland Cement,” Materials and Structures, V. 51, No. 2, Apr. 2018, Article No. 37. doi: 10.1617/s11527-018-1164-5

31. Susilorini, R. M. I. R.; Hardjasaputra, H.; Tudjono, S.; Hapsari, G.; Wahyu, S. R.; Hadikusumo, G.; and Sucipto, J., “The Advantage of Natural Polymer Modified Mortar with Seaweed: Green Construction Material Innovation for Sustainable Concrete,” Procedia Engineering, V. 95, 2014, pp. 419-425. doi: 10.1016/j.proeng.2014.12.201

32. Abdollahnejad, Z.; Kheradmand, M.; and Pacheco-Torgal, F., “Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers,” International Scholarly and Scientific Research & Innovation, V. 11, No. 9, 2017, pp. 1242-1245.

33. Abdollahnejad, Z.; Kheradmand, M.; and Pacheco-Torgal, F., “Short-Term Compressive Strength of Fly Ash and Waste Glass Alkali-Activated Cement-Based Binder Mortars with Two Biopolymers,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 7, July 2017, p. 04017045. doi: 10.1061/(ASCE)MT.1943-5533.0001920

34. Majid, N. B.; Ibrahim, I. S. B.; Sarbini, N. N. B.; Zakaria, Z. A. B.; and Osman, M. H. B., “The Chemical Properties of Seaweed for Modify Concrete,” IOP Conference Series: Earth and Environmental Science, V. 220, 2019, Article No. 012026.

35. Normah, O., and Nazarifah, I., “Production of Semi-Refined Carrageenan from Locally Available Red Seaweed, Eucheuma cottonii on a Laboratory Scale,” Journal of Tropical Agriculture and Food Science, V. 31, No. 2, 2003, pp. 207-213.

36. Hernández-Carmona, G.; Freile-Pelegrín, Y.; and Hernández-Garibay, E., “Conventional and Alternative Technologies for the Extraction of Algal Polysaccharides,” Functional Ingredients from Algae for Foods and Nutraceuticals, H. Domínguez, ed., Woodhead Publishing, Sawston, UK, 2013, pp. 475-516.

37. Sjamsiah; Ramli, N.; Daik, R.; and Yarmo, M. A., “Determination of the Functional Properties of Kappaphycus alvarezii Seaweed Powder,” The Malaysian Journal of Analytical Sciences, V. 17, No. 2, 2013, pp. 236-243.

38. Ajithkumar, S.; Krishnaraj, G.; Abdul Haleem, M. I.; Manivasagan, V.; Ramesh Babu, N. G.; and Pandi Durai, S., “Optimization of Carrageenan Extraction Process from Seaweed,” World Journal of Pharmacy and Pharmaceutical Sciences, V. 6, No. 4, Apr. 2017, pp. 2205-2213.

39. Moses, J.; Anandhakumar, R.; and Shanmugam, M., “Effect of Alkaline Treatment on the Sulfate Content and Quality of Semi-refined Carrageenan Prepared from Seaweed Kappaphycus alvarezii Doty (Doty) Farmed in Indian Waters,” African Journal of Biotechnology, V. 14, No. 18, May 2015, pp. 1584-1589. doi: 10.5897/AJB2014.14203

40. PT. Alamindo Makmur Cemerlang, “Website,” 2020, https://picbabun.com/pt_amc.

41. Lemieux, M.; Bertrand, F.; Chaouki, J.; and Gosselin, P., “Comparative Study of the Mixing of Free-Flowing Particles in a V-Blender and a Bin-Blender,” Chemical Engineering Science, V. 62, No. 6, Mar. 2007, pp. 1783-1802. doi: 10.1016/j.ces.2006.12.012

42. Thrimawithana, T. R.; Young, S.; Dunstan, D. E.; and Alany, R. G., “Texture and Rheological Characterization of Kappa and Iota Carrageenan in the Presence of Counter Ions,” Carbohydrate Polymers, V. 82, No. 1, Aug. 2010, pp. 69-77. doi: 10.1016/j.carbpol.2010.04.024

43. Webber, V.; de Carvalho, S. M.; Ogliari, P. J.; Hayashi, L.; and Barreto, P. L. M., “Optimization of the Extraction of Carrageenan from Kappaphycus alvarezii Using Response Surface Methodology,” Ciência Tecnologia Alimentos Campinas, V. 32, No. 4, Dec. 2012, pp. 812-818. doi: 10.1590/S0101-20612012005000111

44. Mostafa, A. M., and Yahia, A., “New Approach to Assess Build-Up of Cement-Based Suspensions,” Cement and Concrete Research, V. 85, July 2016, pp. 174-182. doi: 10.1016/j.cemconres.2016.03.005

45. Mezger, T. G., The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, Vincentz Network, Hanover, Germany, 2011, 432 pp.

46. Bono, A.; Anisuzzaman, S. M.; and Ding, O. W., “Effect of Process Conditions on the Gel Viscosity and Gel Strength of Semi-Refined Carrageenan (SRC) Produced from Seaweed (Kappaphycus alvarezii),” Journal of King Saud University - Engineering Sciences, V. 26, No. 1, Jan. 2014, pp. 3-9. doi: 10.1016/j.jksues.2012.06.001

47. Heriyanto, H.; Kustiningsih, I.; and Sari, D. K., “The Effect of Temperature and Time of Extraction on the Quality of Semi Refined Carrageenan (SRC),” MATEC Web of Conferences, V. 154, 2018, Article No. 01034.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer