Title:
Influence of Recycled Expanded Polystyrene for Sustainable Structural Concrete
Author(s):
Damian Mateo Villa, Jennifer S. Patino, Daniel E. Mogrovejo, and Janneth G. Bernal
Publication:
Structural Journal
Volume:
120
Issue:
3
Appears on pages(s):
87-99
Keywords:
alternative concrete; expanded polystyrene (EPS); optimum; physical-mechanical characteristics; sustainability
DOI:
10.14359/51738666
Date:
5/1/2023
Abstract:
Polystyrene represents a substantial problem for the environment, as it is not properly recycled. Hence, this work seeks to demonstrate that concrete in which recycled expanded polystyrene (EPS) replaces a portion of the fine aggregate maintains adequate physical and mechanical characteristics while improving its economic and environmental sustainability. This fact is proven by evaluating concrete samples from standardized tests to determine their characteristics, as well as by implementing life-cycle assessment (LCA) and life-cycle cost analysis (LCCA).
Results show that with a replacement of a 100% bulk ratio of
EPS instead of fine aggregate, concrete workability, density, and compressive strength decrease up to 50% ( 2648 N/cm2 [3840 psi] concrete), 15% (2942 N/cm2 [4267 psi] concrete), and 29% (2354 N/cm2 [3414 psi] concrete), respectively, with regard to conventional concrete properties. In addition, EPS generates up to 4.2% of abrasive wear on its surface, according to 2648 N/cm2 (3840 psi) concrete with a replacement of 100% of EPS. Otherwise, a good decrease in temperature transfer up to 7°C (12.6°F) is reached in 2354 N/cm2 (3414 psi) concrete with a replacement of 100% of EPS. Furthermore, it reduces 15% of CO2 emissions and saves 16% in energy consumption with a minimal 7% increase in costs based on 2942 N/cm2 (4267 psi) concrete with a replacement of 88.2% of EPS. Finally, using a multi-criteria analysis, the optimum percentage of EPS in a 2648 N/cm2 (3840 psi) concrete is as high as 87%.
Related References:
1. Arriola Lara, E. A., and Velásquez Martell, F. E., “Evaluación Técnica de Alternativas de Reciclaje de Poliestireno Expandido (EPS),” Universidad de El Salvador, San Salvador, El Salvador, 2013, 249 pp.
2. Martínez López, C., and Laines Canepa, J. R., “Poliestireno Expandido (EPS) y Su Problemática Ambiental,” Kuxulkab’: Revista de Divulgación, Universidad Juárez Autónoma de Tabasco, Villahermosa, México, V. 19, No. 36, 2013, pp. 63-65, http://ri.ujat.mx/bitstream/20.500.12107/2327/1/-339-262-A.pdf. (last accessed Feb. 28, 2023)
3. Shah, S. S.; Ahmad, I.; and Ishaq, M., “Degradation Study of Used Polystyrene with UV Irradiation,” Advanced Materials Science, V. 2, No. 3, 2017, pp. 1-6.
4. Castañeta, G.; Gutiérrez, A. F.; Nacaratte, F.; and Manzano, C. A., “Microplásticos: Un Contaminante que Crece en Todas las Esferas Ambientales, Sus Características y Posibles Riesgos para la Salud Pública por Exposición,” Revista Boliviana de Química, V. 37, No. 3, 2020, pp. 160-175. doi: 10.34098/2078-3949.37.3.4
5. Aramayo Cruz, G.; Buncuga, V.; Cahuapé Casaux, M.; Forgione, F.; and Navarrete, A., “Hormigones con Agregados Livianos,” Universidad Nacional de Rosario, Rosario, Argentina, 2003, 29 pp.
6. Lee, J.-H.; Kang, S.-H.; Ha, Y.-J.; and Hong, S.-G., “Structural Behavior of Durable Composite Sandwich Panels with High Performance Expanded Polystyrene Concrete,” International Journal of Concrete Structures and Materials, V. 12, No. 1, 2018, Article No. 21. doi: 10.1186/s40069-018-0255-6
7. Rodríguez Chico, H. E., “Concreto Liviano a Base de Poliestireno Expandido para la Prefabricación de Unidades de Albañilería no Estructural,” PhD thesis, Universidad Nacional de Cajamarca, Cajamarca, Peru, 2017.
8. Lituma Vicuña, M. C., and Zhunio Cárdenas, B. T., “Influencia de las Perlas de Poliestireno Expandido (EPS) en el Peso y en la Resistencia a Compresión del Hormigón,” Universidad de Cuenca, Cuenca, Ecuador, 2015, 93 pp., http://dspace.ucuenca.edu.ec/handle/123456789/23112. (last accessed Feb. 28, 2023)
9. Chen, B., and Fang, C., “Mechanical Properties of EPS Lightweight Concrete,” Proceedings of the Institution of Civil Engineers – Construction Materials, V. 164, No. 4, Aug. 2011, pp. 173-180.
10. Vakhshouri, B., and Nejadi, S., “Review on the Mixture Design and Mechanical Properties of the Lightweight Concrete Containing Expanded Polystyrene Beads,” Australian Journal of Structural Engineering, V. 19, No. 1, 2018, pp. 1-23. doi: 10.1080/13287982.2017.1353330
11. Assaad, J. J., and El Mir, A., “Durability of Polymer-Modified Lightweight Flowable Concrete Made Using Expanded Polystyrene,” Construction and Building Materials, V. 249, July 2020, Article No. 118764.
12. Prasittisopin, L.; Termkhajornkit, P.; and Kim, Y. H., “Review of Concrete with Expanded Polystyrene (EPS): Performance and Environmental Aspects,” Journal of Cleaner Production, V. 366, Sept. 2022, Article No. 132919.
13. ASTM C31/C31M-17, “Standard Practice for Making and Curing Concrete Test Specimens in the Field,” ASTM International, West Conshohocken, PA, 2017, 6 pp.
14. LEED v4.1, “Performance Management System and Green Building Projects,” U.S. Green Building Council, Washington, DC, 2013, https://www.usgbc.org/leed/v41. (last accessed Mar. 6, 2023)
15. INEN 858:2010, “Áridos. Determinación de la Masa Unitaria (Peso Volumétrico) y el Porcentaje de Vacíos,” first edition, Ecuadorian Institute of Standardization, Quito, Ecuador, 2010, 11 pp.
16. ASTM C143/C143M-20, “Standard Test Method for Slump of Hydraulic-Cement Concrete,” ASTM International, West Conshohocken, PA, 2020, 4 pp.
17. IRAM 1534:2004, “Hormigón de Cemento. Preparación y Curado de Probetas en Laboratorio para Ensayos de Compresión y de Tracción por Compresión Diametral,” Argentine Normalization and Certification Institute, Buenos Aires, Argentina, 2004, 20 pp.
18 ASTM C642-06, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” ASTM International, West Conshohocken, PA, 2006, 3 pp.
19. ASTM C39/C39M-17, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 2017, 8 pp.
20. ASTM C779/C779M-19, “Standard Test Method for Abrasion Resistance of Horizontal Concrete Surfaces,” ASTM International, West Conshohocken, PA, 2019, 6 pp.
21. INEN 861:2011, “Áridos. Determinación del Valor de la Degradación del Árido Grueso de Partículas Mayores a 19 mm Mediante el Uso de la Máquina de Los Ángeles,” first edition, Ecuadorian Institute of Standardization, Quito, Ecuador, 2011, 8 pp.
22. UNE-EN ISO 14040:2006, “Gestión Ambiental. Análisis del Ciclo de Vida. Principios y Marco de Referencia,” Spanish Association for Standardization and Certification, Madrid, Spain, 2006.
23. Badilla Arroyo, P.; Elizondo Santiago, J. A.; Fernández Martínez, T.; Mora Solano, F.; Méndez Trejos, J.; and Quesada Yamasaki, M., “CO2e: Cálculo de Huella de Carbono para Materiales de Construcción en Costa Rica,” Universidad de Costa Rica, San José, Costa Rica, 2015.
24. González Maza, F., “Análisis del Ciclo de Vida de Materiales de Construcción Convencionales y Alternativos,” Universidad Autónoma de San Luis Potosí, San Luis Potosí, México, 2012, 276 pp.
25. Sjunnesson, J., “Life Cycle Assessment of Concrete,” master’s thesis, Lund University, Department of Technology and Society, Lund, Sweden, 2005, 61 pp.
26. UNE-EN 60300-3-3:2009, “Gestión de la Confiabilidad: Parte 3-3: Guía de Aplicación - Cálculo del Coste del Ciclo de Vida,” Spanish Association for Standardization and Certification (AENOR), Madrid, Spain, 2009, 70 pp.
27. ACI Committee 318-S, “Requisitos de Reglamento para Concreto Estructural (ACI 318S-14) y Comentario (ACI 318RS-14),” American Concrete Institute, Farmington Hills, MI, 2014, 592 pp.
28. ASTM C1138/C1138M-19, “Standard Test Method for Abrasion Resistance of Concrete (Underwater Method),” ASTM International, West Conshohocken, PA, 2019, 5 pp.
29. Bouvard, D.; Chaix, J. M.; Dendievel, R.; Fazekas, A.; Létang, J. M.; Peix, G.; and Quenard, D., “Characterization and Simulation of Microstructure and Properties of EPS Lightweight Concrete,” Cement and Concrete Research, V. 37, No. 12, Dec. 2007, pp. 1666-1673. doi: 10.1016/j.cemconres.2007.08.028
30. Maaroufi, M.; Abahri, K.; El Hachem, C.; and Belarbi, R., “Characterization of EPS Lightweight Concrete Microstructure by X-Ray Tomography with Consideration of Thermal Variations,” Construction and Building Materials, V. 178, July 2018, pp. 339-348. doi: 10.1016/j.conbuildmat.2018.05.142
31. Liu, T. C., “Abrasion Resistance of Concrete,” ACI Journal Proceedings, V. 78, No. 5, Sept.-Oct. 1981, pp. 341-350.