Title:
Evaluation of Sulfate Resistance of One-Part Alkali- Activated Materials Prepared by Mechanochemistry
Author(s):
Wenda Wu, Shilong Ma, Yuanda Wang, Xuefang Wang, Liwei Xu, and Shichang Ye
Publication:
Materials Journal
Volume:
120
Issue:
2
Appears on pages(s):
37-51
Keywords:
mechanochemistry; one-part alkali-activated materials; sulfate attack
DOI:
10.14359/51738491
Date:
3/1/2023
Abstract:
In this paper, the resistance of mechanically prepared one-part
alkali-activated materials to external sulfuric acid attack was
investigated by simulating realistic erosion environments in terms of sulfate type, concentration, and erosion mode. The macroscopic properties of the specimens were measured at different ages. Microscopic analyses were performed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and other techniques to obtain the effect of different erosion environments on the mechanical-force chemically prepared one-part alkali-activated materials against sulfate erosion. The study shows that the mechanical properties of the specimens showed a trend of increasing and then decreasing with the extension of erosion time. Compared with Na2SO4 erosion,
the erosion damage was greatest when the sulfate containing Mg2+ was eroded in a wetting-and-drying cycle; the erosion products of Na2SO4 solution coexist in the form of calcite and gypsum, while the erosion products of MgSO4 solution mainly consist of gypsum.
Related References:
1. Shi, C; Krivenko, P. V.; and Roy, D., Alkali-Activated Cements and Concretes, Taylor & Francis, London, UK, 2006.
2. Pacheco-Torgal, F.; Castro-Gomes, J.; and Jalali, S., “Alkali-Activated Binders: A Review: Part 1. Historical Background, Terminology, Reaction Mechanisms and Hydration Products,” Construction and Building Materials, V. 22, No. 7, 2008, pp. 1305-1314. doi: 10.1016/j.conbuildmat.2007.10.015
3. Purdon, A. O., “The Action of Alkalis On Blast-Furnace Slag,” Journal of the Society of Chemical Industry, V. 59, No. 9, 1940, pp. 191-202.
4. Duxson, P., and Provis, J. L., “Designing Precursors for Geopolymer Cements,” Journal of the American Ceramic Society, V. 91, No. 12, 2008, pp. 3864-3869. doi:10.1111/j.1551-2916.2008.02787.x
5. Peng, M. X.; Wang, Z. H.; Shen, S. H.; Xiao, Q. G.; Li, L. J.; Tang, Y. C.; and Hu, L. L., “Alkali Fusion of Bentonite to Synthesize One-Part Geopolymeric Cements Cured at Elevated Temperature by Comparison With Two-Part Ones,” Construction and Building Materials, V. 130, 2017, pp. 103-112 doi: 10.1016/j.conbuildmat.2016.11.010
6. Habert, G.; d’Espinose de Lacaillerie, J. B.; and Roussel, N., “An Environmental Evaluation of Geopolymer Based Concrete Production: Reviewing Current Research Trends,” Journal of Cleaner Production, V. 19, No. 11, 2011, pp. 1229-1238. doi: 10.1016/j.jclepro.2011.03.012
7. McLellan, B. C.; Williams, R. P.; Lay, J.; van Riessen, A.; and Corder, G. D., “Costs and Carbon Emissions For Geopolymer Pastes in Comparison to Ordinary Portland Cement,” Journal of Cleaner Production, V. 19, No. 9-10, 2011, pp. 1080-1090. doi: 10.1016/j.jclepro.2011.02.010
8. Davidovits, J.; Comrie, D. C.; Paterson, J. H.; and Ritcey, D. J., “Geopolymeric Concretes for Environmental Protection,” Concrete International, V. 12, No. 7, July 1990, pp. 30-40.
9. Stellacci, P.; Liberti, L.; Notarnicola, M.; and Bishop, P. L., “Valorization of Coal Fly Ash by Mechano-Chemical Activation: Part I. Enhancing Adsorption Capacity,” Chemical Engineering Journal, V. 149 No. 1-3, 2009, pp. 11-18. doi: 10.1016/j.cej.2008.06.043
10. Temuujin, J.; Williams, R. P.; and van Riessen, A., “Effect of Mechanical Activation of Fly Ash on the Properties of Geopolymer Cured at Ambient Temperature,” Journal of Materials Processing Technology, V. 209, No. 12-13, 2009, pp. 5276-5280. doi: 10.1016/j.jmatprotec.2009.03.016.10.1016
11. Kumar, R.; Kumar, S.; Badjena, S.; and Mehrotra, S. P., “Hydration of Mechanically Activated Granulated Blast Furnace Slag,” Metallurgical and Materials Transactions B, V. 36, No. 6, 2005, pp. 873-883. doi: 10.1007/s11663-005-0089-x
12. Zhao, J.; Wang, D.; and Liao, S., “Effect of Mechanical Grinding on Physical and Chemical Characteristics of Circulating Fluidized Bed Fly Ash From Coal Gangue Power Plant,” Construction and Building Materials, V. 101, Part 1, 2015, pp. 851-860. doi: 10.1016/j.conbuildmat.2015.10.144
13. Feng, P.; Garboczi, E. J.; Miao, C.; and Bullard, J. W., “Microstructural Origins of Cement Paste Degradation by External Sulfate Attack,” Construction and Building Materials, V. 96, 2015, pp. 391-403. doi: 10.1016/j.conbuildmat.2015.07.186
14. Ikumi, T.; Cavalaro, S. H. P.; Segura, I.; de la Fuente, A.; and Aguado, A., “Simplified Methodology to Evaluate the External Sulfate Attack in Concrete Structures,” Materials & Design, V. 89, 2016, pp. 1147-1160. doi: 10.1016/j.matdes.2015.10.084
15. Torres, S. M.; Sharp, J. H.; Swamy, R. N.; Lynsdale, C. J.; and Huntley, S. A., “Long Term Durability of Portland-Limestone Cement Mortars Exposed to Magnesium Sulfate Attack,” Cement and Concrete Composites, V. 25, No. 8, 2003, pp. 947-954. doi: 10.1016/S0958-9465(03)00160-4
16. Lothenbach, B.; Bary, B.; Le Bescop, P.; Schmidt, T.; and Leterrier, N., “Sulfate Ingress in Portland Cement,” Cement and Concrete Research, V. 40, No. 8, 2010, pp. 1211-1225. doi: 10.1016/j.cemconres.2010.04.004
17. Al-Amoudi, O. S. B., “Attack on Plain and Blended Cements Exposed to Aggressive Sulfate Environments,” Cement and Concrete Composites, V. 24, No. 3-4, 2002, pp. 305-316. doi: 10.1016/S0958-9465(01)00082-8
18. Comanescu, I.; Melchers, R.E.; and Taxén, C., “Corrosion and Durability of Offshore Steel Water Injection Pipelines,” Ships and Offshore Structures, V. 11, No. 4, 2016, pp. 424-437. doi: 10.1080/17445302. 2015.1014249
19. Rabeh, M.; Petersen, J.; and O’Hearn, S., “Insulation Optimization Improves Safety, Reduces Corrosion Risks,” Offshore, V. 78, No. 2, 2018, pp. 32-33. doi: 10.14359/51663865
20. Tan, L.; Wang, F.; Liang, M.; Wang, X.; Das, R.; Mao, D.; and Luo, Y., “Antibiotic Resistance Genes Attenuated With Salt Accumulation in Saline Soil,” Journal of Hazardous Materials, V. 374, 2019, pp. 35-42. doi: 10.1016/j.jhazmat.2019.04.020
21. Wang, X.; Xue, Z.; Lu, X.; Liu, Y.; Liu, G.; and Wu, Z., “Salt Leaching of Heavy Coastal Saline Silty Soil by Controlling the Soil Matric Potential,” Soil and Water Research, V. 14, No. 3, 2019, pp. 132-137. doi: 10.17221/106/2018-SWR
22. Rui, H.; Zheng, S.; Gan, V. J. L.; Wang, Z.; Fang, J.; and Shao, Y., “Damage Mechanism and Interfacial Transition Zone Characteristics of Concrete under Sulfate Erosion and Dry-Wet Cycles,” Construction and Building Materials, V. 255, 2020, Article No. 119340. doi: 10.1016/j.conbuildmat.2020.119340
23. Cao, M. L.; Yao, H.; and Cui, S. C., “Experimental Study on Impact Resistance of CaCO3 Whisker-Reinforced Cement Mortar,” Applied Mechanics and Materials, V. 99-100, Sept. 2011, pp. 706-710. doi: 10.4028/www.scientific.net/AMM.99-100.706
24. Ikumi, T., and Segura, I., “Numerical Assessment of External Sulfate Attack in Concrete Structures. A Review,” Cement and Concrete Research, V. 121, 2019, pp. 91-105. doi: 10.1016/j.cemconres. 2019.04.010
25. Sun, D.; Wu, K.; Shi, H.; Zhang, L.; and Zhang, L., “Effect of Interfacial Transition Zone on the Transport of Sulfate Ions in Concrete,” Construction and Building Materials, V. 192, Dec. 2018, pp. 28-37 doi: 10.1016/j.conbuildmat. 2018.10.140
26. Kong, L.; Ge, Y.; Zhang, B.; and Zhang, W., “Effect of Water Release of Lightweight Aggregate on Secondary Hydration of Fly Ash,” Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, V. 37, 2009, pp. 1239-1243.
27. Quan, X.; Wang, S.; Liu, K.; Zhao, N.; Xu, J.; Xu, F.; and Zhou, J., “The Corrosion Resistance of Engineered Cementitious Composite (ECC) Containing High-Volume Fly Ash and Low-Volume Bentonite against the Combined Action of Sulfate Attack and Dry-Wet Cycles,” Construction and Building Materials, V. 303, No. 11, Oct. 2021, Article No. 124599
28. Wang, K.; Guo, J.; Liu, X.; Yang, L.; and Zhang, P., “Effect of Dry–Wet Ratio on Pore-Structure Characteristics of Fly Ash Concrete under Sulfate Attack,” Materials and Structures, V. 54, No. 3, 2021, Article No. 100. doi: 10.1617/s11527-021-01700-2
29. Ganjian, E., and Pouya, H. S., “The Effect of Persian Gulf Tidal Zone Exposure on Durability of Mixes Containing Silica Fume and Blast Furnace Slag,” Construction and Building Materials, V. 23, No. 2, 2009, pp. 644-652. doi: 10.1016/j.conbuildmat.2008.02.009
30. Karakoç, M. B.; Türkmen, I.; Maraş, M. M.; Kantarci, F.; and Demirboğa, R., “Sulfate Resistance of Ferrochrome Slag Based Geopolymer Concrete,” Ceramics International, V. 42, No. 1, Part B, 2016, pp. 1254-1260. doi: 10.1016/j.ceramint.2015.09.058
31. Alcamand, H. A.; Borges, P. H. R.; Silva, F. A.; and Trindade, A. C. C., “The Effect of Matrix Composition and Calcium Content on the Sulfate Durability of Metakaolin and Metakaolin/Slag Alkali-Activated Mortars,” Ceramics International, V. 44, No. 5, 2018, pp. 5037-5044. doi: 10.1016/j.ceramint.2017.12.102
32. Rozière, E.; Loukili, A.; El Hachem, R.; and Grondin, F., “Durability of Concrete Exposed to Leaching and External Sulphate Attacks,” Cement and Concrete Research, V. 39, No. 12, 2009, pp. 1188-1198. doi: 10.1016/j.cemconres.2009.07.021
33. Kunther, W.; Lothenbach, B.; and Scrivener, K. L., “On the Relevance of Volume Increase for the Length Changes of Mortar Bars in Sulfate Solutions,” Cement and Concrete Research, V. 46, 2013, pp. 23-29. doi: 10.1016/j.cemconres.2013.01.002
34. Müllauer, W.; Beddoe, R. E.; and Heinz, D., “Sulfate Attack Expansion Mechanisms,” Cement and Concrete Research, V. 52, 2013, pp. 208-215. doi: 10.1016/j.cemconres.2013.07.005
35. Chang, J.; Gu, Y.; and Ansari, W. S., “Mechanism of Blended Steel Slag Mortar With CO2 Curing Exposed to Sulfate Attack,” Construction and Building Materials, V. 251, 2020, Article No. 118880. doi: 10.1016/j.conbuildmat.2020.118880
36. Yusuf, M. O., “Performance of Slag Blended Alkaline Activated Palm Oil Fuel Ash Mortar in Sulfate Environments,” Construction and Building Materials, V. 98, 2015, pp. 417-424. doi: 10.1016/j.conbuildmat.2015.07.012
37. Lecomte, I.; Henrist, C.; Liégeois M.; Maseri, F.; Rulmont, A.; and Cloots, R., “(Micro)-Structural Comparison between Geopolymers, Alkali-Activated Slag Cement and Portland Cement,” Journal of the European Ceramic Society, V. 26, No. 16, 2005, pp. 3789-3797. doi: 10.1016/j.jeurceramsoc.2005.12.021
38. Aydın, S., and Baradan, B., “Sulfate Resistance of Alkali-Activated Slag and Portland Cement Based Reactive Powder Concrete,” Journal of Building Engineering, V. 43, 2021, Article No. 103205. doi: 10.1016/j.jobe.2021.103205
39. Ismail, I.; Bernal, S. A.; Provis, J. L.; Hamdan, S.; and van Deventer, J. S. J., “Microstructural Changes in Alkali Activated Fly Ash/Slag Geopolymers with Sulfate Exposure,” Materials and Structures, V. 46, No. 3, 2013, pp. 361-373. doi: 10.1617/s11527-012-9906-2
40. Komljenović, M.; Baščarević, Z.; Marjanović, N.; and Nikolić, V., “External Sulfate Attack on Alkali-Activated Slag,” Construction and Building Materials, V. 49, 2013, pp. 31-39. doi: 10.1016/j.conbuildmat.2013.08.013
41. Thokchom, S.; Ghosh, P.; and Ghosh, S., “Performance of Fly Ash Based Geopolymer Mortars in Sulphate Solution,” Journal of Engineering Science and Technology Review, V. 3, No. 1, 2010, pp. 36-40.
42. Duan, P.; Yan, C.; and Zhou, W., “Influence of Partial Replacement of Fly Ash by Metakaolin on Mechanical Properties and Microstructure of Fly Ash Geopolymer Paste Exposed to Sulfate Attack,” Ceramics International, V. 42, No. 2, Part B, 2016, pp. 3504-3517. doi: 10.1016/j.ceramint.2015.10.154
43. Aboulayt, A.; Riahi, M.; Ouazzani Touhami, M.; Hannache, H.; Gomina, M.; and Moussa, R., “Properties of Metakaolin Based Geopolymer Incorporating Calcium Carbonate,” Advanced Powder Technology, V. 28, No. 9, 2017, pp. 2393-2401. doi: 10.1016/j.apt.2017.06.022
44. Chen, J.-K.; Qian, C.; and Song, H., “A New Chemo-Mechanical Model of Damage in Concrete under Sulfate Attack,” Construction and Building Materials, V. 115, 2016, pp. 536-543. doi: 10.1016/j.conbuildmat.2016.04.074
45. Myers, R. J.; Bernal, S. A.; Gehman, J. D.; van Deventer, J. S. J.; and Provis, J. L., “The Role of Al in Cross-Linking of Alkali-Activated Slag Cements,” Journal of the American Ceramic Society, V. 98, No. 3, 2015, pp. 996-1004. doi: 10.1111/jace.13360
46. Ozturk, A. U., and Baradan, B., “A Comparison Study of Porosity and Compressive Strength Mathematical Models with Image Analysis,” Computational Materials Science, V. 43, No. 4, 2008, pp. 974-979. doi: 10.1016/j.commatsci.2008.02.011
47. Olsen, R. A.; Neubauer, C. M.; and Jennings, H. M., “Damage to the Pore Structure of Hardened Portland Cement Paste by Mercury Intrusion,” Journal of the American Ceramic Society, V 80, No. 9, 1997, pp. 2454-2458. doi: 10.1111/j.1151-2916.1997.tb03144.x
48. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, 2006.
49. Jin, S.; Zhang, J.; and Han, S., “Fractal Analysis of Relation between Strength and Pore Structure of Hardened Mortar,” Construction and Building Materials, V. 135, 2017, pp. 1-7. doi: 10.1016/j.conbuildmat.2016.12.152
50. Babaee, M., and Castel, A., “Water Vapor Sorption Isotherms, Pore Structure, and Moisture Transport Characteristics of Alkali-Activated and Portland Cement-Based Binders,” Cement and Concrete Research, V. 113, 2018, pp. 99-120. doi: 10.1016/j.cemconres.2018.07.006
51. Li, Q.; Yang, Y.; Yang, K.; Chao, Z.; Tang, D.; Tian, Y.; Wu, F.; Basheer, M.; and Yang, C., “The Role of Calcium Stearate on Regulating Activation to Form Stable, Uniform and Flawless Reaction Products in Alkali-Activated Slag Cement,” Cement and Concrete Composites, V. 103, 2019, pp. 242-251. doi: 10.1016/j.cemconcomp.2019.05.009
52. Li, Q.; Yang, K.; and Yang, C., “An Alternative Admixture to Reduce Sorptivity of Alkali-Activated Slag Cement by Optimising Pore Structure and Introducing Hydrophobic Film,” Cement and Concrete Composites, V. 95, 2019, pp. 183-192. doi: 10.1016/j.cemconcomp.2018.11.004
53. Yang, K.; Yang, C.; Magee, B.; Nanukuttan, S.; and Ye, J., “Establishment of a Preconditioning Regime for Air Permeability and Sorptivity of Alkali-Activated Slag Concrete,” Cement and Concrete Composites, V. 73, 2016, pp. 19-28. doi: 10.1016/j.cemconcomp.2016.06.019
54. Puertas, F.; Fernández-Jiménez, A.; Blanco-Varela, M. T., “Pore Solution in Alkali-Activated Slag Cement Pastes. Relation to the Composition and Structure of Calcium Silicate Hydrate,” Cement and Concrete Research, V. 34, No. 1, 2004, pp. 139-148. doi: 10.1016/S0008-8846(03)00254-0