Title:
Effect of Silica Fume and Activator Concentration on Metakaolin Geopolymer Exposed to Thermal Loads
Author(s):
Alaa M. Rashad and Sayieda R. Zeedan
Publication:
Materials Journal
Volume:
120
Issue:
1
Appears on pages(s):
231-242
Keywords:
activator concentration; compressive strength; elevated temperatures; flowability; metakaolin; silica fume.
DOI:
10.14359/51737344
Date:
1/1/2023
Abstract:
There are inconsistent results in previous studies that focused on the effect of elevated temperatures on metakaolin (MK) geopolymers. Likewise, some studies reported a positive effect of silica fume (SF) on the compressive strength of MK geopolymers, while others reported a negative effect. In this paper, the authors tried to get suitable reasons for these contradictions. Therefore, two different concentrations of sodium silicate and different ratios of SF that affect the Si/Al and Na/Si molar ratios were used. For each concentration of activator, MK was partially replaced with 5 to 25 wt.% SF. The flowability was measured and the compressive strength of the specimens before and after exposure to 400 to 1000°C was recorded. The results were analyzed by different techniques and showed higher flowability with the inclusion of SF.
The incorporation of SF may increase or decrease the compressive strength before and after heating, depending on activator concentration—that is, Si/Al and Na/Si.
Related References:
1. Teh, S. H.; Wiedmann, T.; Castel, A.; and de Burgh, J., “Hybrid Life Cycle Assessment of Greenhouse Gas Emissions From Cement, Concrete and Geopolymer Concrete in Australia,” Journal of Cleaner Production, V. 152, 2017, pp. 312-320. doi: 10.1016/j.jclepro.2017.03.122
2. IPCC, “Special Report on Carbon Dioxide Capture and Storage,” Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2005.
3. Rashad, A. M., “A Brief on High-Volume Class F Fly Ash as Cement Replacement–A Guide for Civil Engineer,” International Journal of Sustainable Built Environment, V. 4, No. 2, 2015, pp. 278-306. doi: 10.1016/j.ijsbe.2015.10.002
4. Rashad, A. M.; Ouda, A. S.; and Sadek, D. M., “Behavior of Alkali-Activated Metakaolin Pastes Blended with Quartz Powder Exposed to Seawater Attack,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 8, 2018, p. 04018159. doi: 10.1061/(ASCE)MT.1943-5533.0002335
5. Rashad, A. M., “A Comprehensive Overview About the Influence of Different Additives on the Properties of Alkali-Activated Slag–A Guide for Civil Engineer,” Construction and Building Materials, V. 47, 2013, pp. 29-55. doi: 10.1016/j.conbuildmat.2013.04.011
6. Rashad, A. M., “A Comprehensive Overview About the Influence of Different Admixtures and Additives on the Properties of Alkali-Activated Fly Ash,” Materials & Design, V. 53, 2014, pp. 1005-1025. doi: 10.1016/j.matdes.2013.07.074
7. Rashad, A. M., “Alkali-Activated Metakaolin: A Short Guide for Civil Engineer–An Overview,” Construction and Building Materials, V. 41, 2013, pp. 751-765. doi: 10.1016/j.conbuildmat.2012.12.030
8. Amran, Y. H. M.; Alyousef, R.; Alabduljabbar, H.; and El-Zeadani, M., “Clean Production and Properties of Geopolymer Concrete; A Review,” Journal of Cleaner Production, V. 251, Apr. 2020, p. 119679.
9. Rashad, A. M.; Hassan, A. A.; and Zeedan, S. R., “An Investigation on Alkali-Activated Egyptian Metakaolin Pastes Blended With Quartz Powder Subjected to Elevated Temperatures,” Applied Clay Science, V. 132, 2016, pp. 366-376. doi: 10.1016/j.clay.2016.07.002
10. Bai, T.; Song, Z.-G.; Wu, Y.-G.; Hu, X.-D.; and Bai, H., “Influence of Steel Slag on the Mechanical Properties and Curing Time of Metakaolin Geopolymer,” Ceramics International, V. 44, No. 13, 2018, pp. 15706-15713. doi: 10.1016/j.ceramint.2018.05.243
11. Wan, Q.; Rao, F.; Song, S.; Cholico-González, D. F.; and Ortiz, N. L., “Combination Formation in the Reinforcement of Metakaolin Geopolymers With Quartz Sand,” Cement and Concrete Composites, V. 80, 2017, pp. 115-122. doi: 10.1016/j.cemconcomp.2017.03.005
12. Rovnaník, P.; Rovnaníková, P.; Vyšvařil, M.; Grzeszczyk, S.; and Janowska-Renkas, E., “Rheological Properties and Microstructure of Binary Waste Red Brick Powder/Metakaolin Geopolymer,” Construction and Building Materials, V. 188, 2018, pp. 924-933. doi: 10.1016/j.conbuildmat.2018.08.150
13. Perez-Cortes, P., and Escalante-Garcia, J. I., “Alkali Activated Metakaolin With High Limestone Contents–Statistical Modeling of Strength and Environmental and Cost Analyses,” Cement and Concrete Composites, V. 106, 2020, p. 103450. doi: 10.1016/j.cemconcomp.2019.103450
14. Alcamand, H. A.; Borges, P. H.; Silva, F. A.; and Trindade, A. C. C., “The Effect of Matrix Composition and Calcium Content on the Sulfate Durability of Metakaolin and Metakaolin/Slag Alkali-Activated Mortars,” Ceramics International, V. 44, No. 5, 2018, pp. 5037-5044. doi: 10.1016/j.ceramint.2017.12.102
15. Yang, T.; Zhu, H.; and Zhang, Z., “Influence of Fly Ash on the Pore Structure and Shrinkage Characteristics of Metakaolin-Based Geopolymer Pastes and Mortars,” Construction and Building Materials, V. 153, 2017, pp. 284-293. doi: 10.1016/j.conbuildmat.2017.05.067
16. Hemra, K., and Aungkavattana, P., “Effect of Cordierite Addition on Compressive Strength and Thermal Stability of Metakaolin Based Geopolymer,” Advanced Powder Technology, V. 27, No. 3, 2016, pp. 1021-1026. doi: 10.1016/j.apt.2016.04.019
17. Allali, F.; Joussein, E.; Kandri, N. I.; and Rossignol, S., “The Influence of Calcium Content on the Performance of Metakaolin-Based Geomaterials Applied in Mortars Restoration,” Materials & Design, V. 103, 2016, pp. 1-9. doi: 10.1016/j.matdes.2016.04.028
18. Zhu, H.; Liang, G.; Zhang, Z.; Wu, Q.; and Du, J., “Partial Replacement of Metakaolin With Thermally Treated Rice Husk Ash in Metakaolin-Based Geopolymer,” Construction and Building Materials, V. 221, 2019, pp. 527-538. doi: 10.1016/j.conbuildmat.2019.06.112
19. Kong, D. L.; Sanjayan, J. G.; and Sagoe-Crentsil, K., “Comparative Performance of Geopolymers Made With Metakaolin and Fly Ash After Exposure to Elevated Temperatures,” Cement and Concrete Research, V. 37, No. 12, 2007, pp. 1583-1589. doi: 10.1016/j.cemconres.2007.08.021
20. Lin, T.; Jia, D.; He, P.; and Wang, M., “Thermal-Mechanical Properties of Short Carbon Fiber Reinforced Geopolymer Matrix Composites Subjected to Thermal Load,” Journal of Central South University of Technology, V. 16, No. 6, 2009, pp. 881-886. doi: 10.1007/s11771-009-0146-8
21. Lin, T.; Jia, D.; He, P.; and Wang, M., “Thermo-Mechanical and Microstructural Characterization of Geopolymers With α-Al2O3 Particle Filler,” International Journal of Thermophysics, V. 30, No. 5, 2009, pp. 1568-1577. doi: 10.1007/s10765-009-0636-9
22. He, P.; Jia, D.; Lin, T.; Wang, M.; and Zhou, Y., “Effects of High-Temperature Heat Treatment on the Mechanical Properties of Unidirectional Carbon Fiber Reinforced Geopolymer Composites,” Ceramics International, V. 36, No. 4, 2010, pp. 1447-1453. doi: 10.1016/j.ceramint.2010.02.012
23. Bernal, S. A.; Bejarano, J.; Garzón, C.; de Gutiérrez, R. M.; Delvasto, S.; and Rodríguez, E. D., “Performance of Refractory Aluminosilicate Particle/Fiber-Reinforced Geopolymer Composites,” Composites Part B: Engineering, V. 43, No. 4, 2012, pp. 1919-1928. doi: 10.1016/j.compositesb.2012.02.027
24. Zhang, H. Y.; Kodur, V.; Qi, S. L.; Cao, L.; and Wu, B., “Development of Metakaolin–Fly Ash Based Geopolymers for Fire Resistance Applications,” Construction and Building Materials, V. 55, 2014, pp. 38-45. doi: 10.1016/j.conbuildmat.2014.01.040
25. Elimbi, A.; Tchakoute, H.; Kondoh, M.; and Manga, J. D., “Thermal Behavior and Characteristics of Fired Geopolymers Produced From Local Cameroonian Metakaolin,” Ceramics International, V. 40, No. 3, 2014, pp. 4515-4520. doi: 10.1016/j.ceramint.2013.08.126
26. Trindade, A. C. C.; Silva, F. A.; Alcamand, H. A.; and Borges, P. H. R., “On the Mechanical Behavior of Metakaolin Based Geopolymers Under Elevated Temperatures,” Materials Research, V. 20, 2017, pp. 265-272. doi: 10.1590/1980-5373-mr-2017-0101
27. Lahoti, M.; Wong, K. K.; Yang, E.-H.; and Tan, K. H., “Effects of Si/Al Molar Ratio on Strength Endurance and Volume Stability of Metakaolin Geopolymers Subject to Elevated Temperature,” Ceramics International, V. 44, No. 5, 2018, pp. 5726-5734. doi: 10.1016/j.ceramint.2017.12.226
28. Celik, A.; Yilmaz, K.; Canpolat, O.; Al-Mashhadani, M. M.; Aygörmez, Y.; and Uysal, M., “High-Temperature Behavior and Mechanical Characteristics of Boron Waste Additive Metakaolin Based Geopolymer Composites Reinforced With Synthetic Fibers,” Construction and Building Materials, V. 187, 2018, pp. 1190-1203. doi: 10.1016/j.conbuildmat.2018.08.062
29. Liang, G.; Zhu, H.; Zhang, Z.; and Wu, Q., “Effect of Rice Husk Ash Addition on the Compressive Strength and Thermal Stability of Metakaolin Based Geopolymer,” Construction and Building Materials, V. 222, 2019, pp. 872-881. doi: 10.1016/j.conbuildmat.2019.06.200
30. He, P.; Jia, D.; Wang, M.; and Zhou, Y., “Improvement of High-Temperature Mechanical Properties of Heat Treated Cf/Geopolymer Composites By Sol-SiO2 Impregnation,” Journal of the European Ceramic Society, V. 30, No. 15, 2010, pp. 3053-3061. doi: 10.1016/j.jeurceramsoc.2010.07.031
31. Kuenzel, C.; Grover, L.; Vandeperre, L.; Boccaccini, A.; and Cheeseman, C., “Production of Nepheline/Quartz Ceramics From Geopolymer Mortars,” Journal of the European Ceramic Society, V. 33, No. 2, 2013, pp. 251-258. doi: 10.1016/j.jeurceramsoc.2012.08.022
32. Rashad, A. M., and Ouda, A. S., “Thermal Resistance of Alkali-Activated Metakaolin Pastes Containing Nano-Silica Particles,” Journal of Thermal Analysis and Calorimetry, V. 136, No. 2, 2019, pp. 609-620. doi: 10.1007/s10973-018-7657-1
33. He, P.; Yang, Z.; Yang, J.; Duan, X.; Jia, D.; Wang, S.; Zhou, Y.; Wang, Y.; and Zhang, P., “Preparation of Fully Stabilized Cubic-Leucite Composite Through Heat-Treating Cs-Substituted K-Geopolymer Composite at High Temperatures,” Composites Science and Technology, V. 107, 2015, pp. 44-53. doi: 10.1016/j.compscitech.2014.11.009
34. Behera, P.; Baheti, V.; Militky, J.; and Louda, P., “Elevated Temperature Properties of Basalt Microfibril Filled Geopolymer Composites,” Construction and Building Materials, V. 163, 2018, pp. 850-860. doi: 10.1016/j.conbuildmat.2017.12.152
35. Bernal, S. A.; Rodríguez, E. D.; de Gutiérrez, R. M.; Gordillo, M.; and Provis, J. L., “Mechanical and Thermal Characterisation of Geopolymers Based on Silicate-Activated Metakaolin/Slag Blends,” Journal of Materials Science, V. 46, No. 16, 2011, pp. 5477-5486. doi: 10.1007/s10853-011-5490-z
36. Villaquirán‐Caicedo, M. A., and Mejía de Gutiérrez, R., “Mechanical and Microstructural Analysis of Geopolymer Composites Based on Metakaolin and Recycled Silica,” Journal of the American Ceramic Society, V. 102, No. 6, 2019, pp. 3653-3662. doi: 10.1111/jace.16208
37. Kamseu, E.; Rizzuti, A.; Leonelli, C.; and Perera, D., “Enhanced Thermal Stability in K2O-Metakaolin-Based Geopolymer Concretes by Al2O3 And SiO2 Fillers Addition,” Journal of Materials Science, V. 45, No. 7, 2010, pp. 1715-1724. doi: 10.1007/s10853-009-4108-1
38. Rashad, A. M., “Metakaolin as Cementitious Material: History, Scours, Production and Composition–A Comprehensive Overview,” Construction and Building Materials, V. 41, 2013, pp. 303-318. doi: 10.1016/j.conbuildmat.2012.12.001
39. Uysal, M.; Al-mashhadani, M. M.; Aygörmez, Y.; and Canpolat, O., “Effect of Using Colemanite Waste and Silica Fume as Partial Replacement on the Performance of Metakaolin-Based Geopolymer Mortars,” Construction and Building Materials, V. 176, 2018, pp. 271-282. doi: 10.1016/j.conbuildmat.2018.05.034
40. Batista, R. P.; Trindade, A. C. C.; Borges, P. H.; and Silva, F. A., “Silica Fume as Precursor in the Development of Sustainable and High-Performance MK-Based Alkali-Activated Materials Reinforced With Short PVA Fibers,” Frontiers in Materials, V. 6, 2019, p. 77. doi: 10.3389/fmats.2019.00077
41. Aygörmez, Y.; Canpolat, O.; Al-mashhadani, M. M.; and Uysal, M., “Elevated Temperature, Freezing-Thawing and Wetting-Drying Effects on Polypropylene Fiber Reinforced Metakaolin Based Geopolymer Composites,” Construction and Building Materials, V. 235, 2020, p. 117502. doi: 10.1016/j.conbuildmat.2019.117502
42. Rashad, A. M., and Essa, G. M., “Effect of Ceramic Waste Powder on Alkali-Activated Slag Pastes Cured in Hot Weather After Exposure to Elevated Temperature,” Cement and Concrete Composites, V. 111, 2020, p. 103617. doi: 10.1016/j.cemconcomp.2020.103617
43. Yaseri, S.; Hajiaghaei, G.; Mohammadi, F.; Mahdikhani, M.; and Farokhzad, R., “The Role of Synthesis Parameters on the Workability, Setting and Strength Properties of Binary Binder Based Geopolymer Paste,” Construction and Building Materials, V. 157, 2017, pp. 534-545. doi: 10.1016/j.conbuildmat.2017.09.102
44. Khalil, M. G.; Elgabbas, F.; El-Feky, M. S.; and El-Shafie, H., “Performance of Geopolymer Mortar Cured Under Ambient Temperature,” Construction and Building Materials, V. 242, 2020, p. 118090. doi: 10.1016/j.conbuildmat.2020.118090
45. Tuyan, M.; Andiç-Çakir, Ö.; and Ramyar, K., “Effect of Alkali Activator Concentration and Curing Condition on Strength and Microstructure of Waste Clay Brick Powder-Based Geopolymer,” Composites Part B: Engineering, V. 135, 2018, pp. 242-252. doi: 10.1016/j.compositesb.2017.10.013
46. Hasnaoui, A.; Ghorbel, E.; and Wardeh, G., “Optimization Approach of Granulated Blast Furnace Slag and Metakaolin Based Geopolymer Mortars,” Construction and Building Materials, V. 198, 2019, pp. 10-26. doi: 10.1016/j.conbuildmat.2018.11.251
47. Rashad, A. M., “Metakaolin: Fresh Properties and Optimum Content for Mechanical Strength in Traditional Cementitious Materials-A Comprehensive Overview,” Reviews on Advanced Materials Science, V. 40, No. 1, 2015, pp. 15-44.
48. Lahoti, M.; Narang, P.; Tan, K. H.; and Yang, E.-H., “Mix Design Factors and Strength Prediction of Metakaolin-Based Geopolymer,” Ceramics International, V. 43, No. 14, 2017, pp. 11433-11441. doi: 10.1016/j.ceramint.2017.06.006
49. Riahi, S.; Nemati, A.; Khodabandeh, A.; and Baghshahi, S., “The Effect of Mixing Molar Ratios and Sand Particles on Microstructure and Mechanical Properties of Metakaolin-Based Geopolymers,” Materials Chemistry and Physics, V. 240, 2020, p. 122223. doi: 10.1016/j.matchemphys.2019.122223
50. Duxson, P.; Mallicoat, S. W.; Lukey, G. C.; Kriven, W. M.; and van Deventer, J. S., “The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-Based Geopolymers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 292, No. 1, 2007, pp. 8-20. doi: 10.1016/j.colsurfa.2006.05.044
51. De Silva, P.; Sagoe-Crenstil, K.; and Sirivivatnanon, V., “Kinetics of Geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, V. 37, No. 4, 2007, pp. 512-518. doi: 10.1016/j.cemconres.2007.01.003
52. Wang, H.; Li, H.; and Yan, F., “Synthesis and Mechanical Properties of Metakaolinite-Based Geopolymer,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, V. 268, No. 1-3, 2005, pp. 1-6. doi: 10.1016/j.colsurfa.2005.01.016
53. Pouhet, R.; Cyr, M.; and Bucher, R., “Influence of the Initial Water Content in Flash Calcined Metakaolin-Based Geopolymer,” Construction and Building Materials, V. 201, 2019, pp. 421-429. doi: 10.1016/j.conbuildmat.2018.12.201
54. Nmiri, A.; Duc, M.; Hamdi, N.; Yazoghli-Marzouk, O.; and Srasra, E., “Replacement of Alkali Silicate Solution with Silica Fume in Metakaolin-Based Geopolymers,” International Journal of Minerals Metallurgy and Materials, V. 26, No. 5, 2019, pp. 555-564. doi: 10.1007/s12613-019-1764-2
55. Chindaprasirt, P.; Paisitsrisawat, P.; and Rattanasak, U., “Strength and Resistance to Sulfate and Sulfuric Acid of Ground Fluidized Bed Combustion Fly Ash–Silica Fume Alkali-Activated Composite,” Advanced Powder Technology, V. 25, No. 3, 2014, pp. 1087-1093. doi: 10.1016/j.apt.2014.02.007
56. Burciaga‐Díaz, O.; Escalante‐García, J. I.; Arellano‐Aguilar, R.; and Gorokhovsky, A., “Statistical Analysis of Strength Development as a Function of Various Parameters on Activated Metakaolin/Slag Cements,” Journal of the American Ceramic Society, V. 93, No. 2, 2010, pp. 541-547. doi: 10.1111/j.1551-2916.2009.03414.x
57. Sawan, S. A.; Zawrah, M.; Khattab, R.; and Abdel-Shafi, A. A., “In-Situ Formation of Geopolymer Foams Through Addition of Silica Fume: Preparation and Sinterability,” Materials Chemistry and Physics, V. 239, 2020, p. 121998. doi: 10.1016/j.matchemphys.2019.121998
58. Zawrah, M.; Sawan, S. A.; Khattab, R.; and Abdel-Shafi, A. A., “Effect of Nano Sand on the Properties of Metakaolin-Based Geopolymer: Study on its Low Rate Sintering,” Construction and Building Materials, V. 246, 2020, p. 118486. doi: 10.1016/j.conbuildmat.2020.118486
59. Istuque, D.; Soriano, L.; Akasaki, J.; Melges, J.; Borrachero, M.; Monzó, J.; Payá, J.; and Tashima, M. M., “Effect of Sewage Sludge Ash on Mechanical and Microstructural Properties of Geopolymers Based on Metakaolin,” Construction and Building Materials, V. 203, 2019, pp. 95-103. doi: 10.1016/j.conbuildmat.2019.01.093
60. Zhang, H. Y.; Kodur, V.; Wu, B.; Cao, L.; and Wang, F., “Thermal Behavior and Mechanical Properties of Geopolymer Mortar After Exposure to Elevated Temperatures,” Construction and Building Materials, V. 109, 2016, pp. 17-24. doi: 10.1016/j.conbuildmat.2016.01.043
61. Duan, P.; Yan, C.; Zhou, W.; and Luo, W., “Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes,” Arabian Journal for Science and Engineering, V. 40, No. 8, 2015, pp. 2261-2269. doi: 10.1007/s13369-015-1748-0
62. Arslan, A. A.; Uysal, M.; Yılmaz, A.; Al-Mashhadani, M. M.; Canpolat, O.; Şahin, F.; and Aygörmez, Y., “Influence of Wetting-Drying Curing System on the Performance of Fiber Reinforced Metakaolin-Based Geopolymer Composites,” Construction and Building Materials, V. 225, 2019, pp. 909-926. doi: 10.1016/j.conbuildmat.2019.07.235
63. Duxson, P.; Lukey, G. C.; and van Deventer, J. S., “Physical Evolution of Na-Geopolymer Derived From Metakaolin up to 1000°C,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 3044-3054. doi: 10.1007/s10853-006-0535-4
64. Villaquirán-Caicedo, M. A., “Studying Different Silica Sources for Preparation of Alternative Waterglass Used in Preparation of Binary Geopolymer Binders From Metakaolin/Boiler Slag,” Construction and Building Materials, V. 227, 2019, p. 116621. doi: 10.1016/j.conbuildmat.2019.08.002
65. Rashad, A. M.; Essa, G. M.; and Abdel-Gawwad, H. A., “An Investigation of Alkali-Activated Slag Pastes Containing Recycled Glass Powder Under the Effect of Elevated Temperatures,” Environmental Science and Pollution Research International, V. 29, No. 19, 2022, pp. 28647-28660. doi: 10.1007/s11356-021-18365-7