Effect of Slag Fineness and Na2SO4 Concentration on Carbonation of Na2SO4-Activated Slag

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Effect of Slag Fineness and Na2SO4 Concentration on Carbonation of Na2SO4-Activated Slag

Author(s): Alaa M. Rashada and Yun Bai

Publication: Materials Journal

Volume: 120

Issue: 1

Appears on pages(s): 169-180

Keywords: activation; carbonation; compressive strength; fineness; pH value; slag; sodium sulfate

DOI: 10.14359/51737291

Date: 1/1/2023

Abstract:
The properties of sodium sulfate-activated ground-granulated blast-furnace slag (shortened as slag) pastes under carbonation attack were analyzed and compared with the uncarbonated specimens in this paper. A slag with two different finenesses—namely, 250 and 500 m2/kg—was activated by sodium sulfate at two concentrations (1 and 3% Na2O equivalent). After the initial 28 days of curing, the hardened pastes were carbonated in 5% CO2 and relative humidity (RH) of 65% at 20 ± 1°C for 2, 4, and 12 weeks. The carbonation depth, compressive strength, and pH value of the carbonated specimens were measured and compared with the uncarbonated counterparts exposed to a natural concentration of CO2. X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the reaction products and microstructure of both carbonated and uncarbonated alkali-activated slag (AAS) samples. The results indicated that the specimens prepared with the coarse slag and low Na2SO4 concentration (1% Na2O equivalent) showed the worst carbonation resistance. Increasing slag fineness has a leverage effect on increasing the carbonation resistance. However, increasing Na2SO4 concentration (3% Na2O equivalent) led to more notable carbonation resistance than increasing slag fineness. By combining the fine slag with high Na2SO4 concentration, almost no changes in the pH, carbonation depth, and compressive strength were noticed even after 12 weeks of carbonation, showing a superb resistance to carbonation attack.

Related References:

1. Aïtcin, P.-C., “Cements of Yesterday and Today: Concrete of Tomorrow,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1349-1359. doi: 10.1016/S0008-8846(00)00365-3

2. Rashad, A. M., “A Comprehensive Overview about the Influence of Different Additives on the Properties of Alkali-Activated Slag–A Guide for Civil Engineer,” Construction and Building Materials, V. 47, 2013, pp. 29-55. doi: 10.1016/j.conbuildmat.2013.04.011

3. Rashad, A. M., “A Brief on High-Volume Class F Fly Ash as Cement Replacement–A Guide for Civil Engineer,” International Journal of Sustainable Built Environment, V. 4, No. 2, 2015, pp. 278-306. doi: 10.1016/j.ijsbe.2015.10.002

4. Rashad, A. M., “An Overview on Rheology, Mechanical Properties and Durability of High-Volume Slag Used as a Cement Replacement in Paste, Mortar and Concrete,” Construction and Building Materials, V. 187, 2018, pp. 89-117. doi: 10.1016/j.conbuildmat.2018.07.150

5. Rashad, A. M., “Alkali-Activated Metakaolin: A Short Guide for Civil Engineer–An Overview,” Construction and Building Materials, V. 41, 2013, pp. 751-765. doi: 10.1016/j.conbuildmat.2012.12.030

6. Rashad, A. M., “A Comprehensive Overview about the Influence of Different Admixtures and Additives on the Properties of Alkali-Activated Fly Ash,” Materials & Design, V. 53, 2014, pp. 1005-1025. doi: 10.1016/j.matdes.2013.07.074

7. McLellan, B. C.; Williams, R. P.; Lay, J.; van Riessen, A.; and Corder, G. D., “Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement,” Journal of Cleaner Production, V. 19, No. 9-10, 2011, pp. 1080-1090. doi: 10.1016/j.jclepro.2011.02.010

8. UN Environment; Scrivener, K. L.; John, V. M.; and Gartner, E. M., “Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry,” Cement and Concrete Research, V. 114, 2018, pp. 2-26. doi: 10.1016/j.cemconres.2018.03.015

9. Rashad, A. M., “A Synopsis of Carbonation of Alkali-Activated Materials,” Green Materials, V. 7, No. 3, 2019, pp. 118-136. doi: 10.1680/jgrma.18.00052

10. Morandeau, A.; Thiéry, M.; and Dangla, P., “Investigation of the Carbonation Mechanism of CH and CSH in Terms of Kinetics, Microstructure Changes and Moisture Properties,” Cement and Concrete Research, V. 56, 2014, pp. 153-170. doi: 10.1016/j.cemconres.2013.11.015

11. Zhang, J.; Shi, C.; Zhang, Z.; and Ou, Z., “Durability of Alkali-Activated Materials in Aggressive Environments: A Review on Recent Studies,” Construction and Building Materials, V. 152, 2017, pp. 598-613. doi: 10.1016/j.conbuildmat.2017.07.027

12. Miyahara, S.; Owaki, E.; Ogino, M.; and Sakai, E., “Carbonation of a Concrete Using a Large Amount of Blast Furnace Slag Powder,” Journal of the Ceramic Society of Japan, V. 125, No. 6, 2017, pp. 533-538. doi: 10.2109/jcersj2.16269

13. Puertas, F.; Palacios, M.; and Vázquez, T., “Carbonation Process of Alkali-Activated Slag Mortars,” Journal of Materials Science, V. 41, No. 10, 2006, pp. 3071-3082. doi: 10.1007/s10853-005-1821-2

14. Deja, J., “Carbonation Aspects of Alkali Activated Slag Mortars and Concretes,” Silicates Industriels, V. 67, No. 3-4, 2002, pp. 37-42.

15. Kim, G. M.; Jang, J. G.; Naeem, F.; and Lee, H. K., “Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash,” International Journal of Concrete Structures and Materials, V. 9, No. 3, 2015, pp. 283-294. doi: 10.1007/s40069-015-0111-x

16. Shi, C.; Krivenko, P. V.; and Roy, D., Alkali-Activated Cements and Concretes, Taylor & Francis, London, UK, 2006, 392 pp.

17. Vinai, R., and Soutsos, M., “Production of Sodium Silicate Powder from Waste Glass Cullet for Alkali Activation of Alternative Binders,” Cement and Concrete Research, V. 116, 2019, pp. 45-56. doi: 10.1016/j.cemconres.2018.11.008

18. Habert, G.; d’Espinose de Lacaillerie, J. B.; and Roussel, N., “An Environmental Evaluation of Geopolymer Based Concrete Production: Reviewing Current Research Trends,” Journal of Cleaner Production, V. 19, No. 11, 2011, pp. 1229-1238. doi: 10.1016/j.jclepro.2011.03.012

19. Assi, L. N.; Carter, K.; Deaver, E.; and Ziehl, P., “Review of Availability of Source Materials for Geopolymer/Sustainable Concrete,” Journal of Cleaner Production, V. 263, 2020, Article No. 121477. doi: 10.1016/j.jclepro.2020.121477

20. Ye, H.; Cai, R.; and Tian, Z., “Natural Carbonation-Induced Phase and Molecular Evolution of Alkali-Activated Slag: Effect of Activator Composition and Curing Temperature,” Construction and Building Materials, V. 248, 2020, Article No. 118726. doi: 10.1016/j.conbuildmat.2020.118726

21. Rashad, A. M., “Additives to Increase Carbonation Resistance of Slag Activated with Sodium Sulfate,” ACI Materials Journal, V. 119, No. 2, Mar. 2022, pp. 53-66.

22. Bernal, S. A.; Provis, J. L.; Walkley, B.; San Nicolas, R.; Gehman, J. D.; Brice, D. G.; Kilcullen, A. R.; Duxson, P.; and van Deventer, J. S. J., “Gel Nanostructure in Alkali-Activated Binders Based on Slag and Fly Ash, and Effects of Accelerated Carbonation,” Cement and Concrete Research, V. 53, 2013, pp. 127-144. doi: 10.1016/j.cemconres.2013.06.007

23. Pouhet, R., and Cyr, M., “Carbonation in the Pore Solution of Metakaolin-Based Geopolymer,” Cement and Concrete Research, V. 88, 2016, pp. 227-235. doi: 10.1016/j.cemconres.2016.05.008

24. Zhang, X.; Long, K.; Liu, W.; Li, L.; and Long, W.-J., “Carbonation and Chloride Ions’ Penetration of Alkali-Activated Materials: A Review,” Molecules (Basel), V. 25, No. 21, 2020, Article No. 5074. doi: 10.3390/molecules25215074

25. Bernal, S. A.; Provis, J. L.; Brice, D. G.; Kilcullen, A.; Duxson, P.; and van Deventer, J. S. J., “Accelerated Carbonation Testing of Alkali-Activated Binders Significantly Underestimates Service Life: The Role of Pore Solution Chemistry,” Cement and Concrete Research, V. 42, No. 10, 2012, pp. 1317-1326. doi: 10.1016/j.cemconres.2012.07.002

26. Bernal, S. A.; Provis, J. L.; de Gutiérrez, R. M.; and van Deventer, J. S. J., “Accelerated Carbonation Testing of Alkali-Activated Slag/Metakaolin Blended Concretes: Effect of Exposure Conditions,” Materials and Structures, V. 48, No. 3, 2015, pp. 653-669. doi: 10.1617/s11527-014-0289-4

27. Rashad, A. M.; Bai, Y.; Basheer, P. A. M.; Milestone, N. B.; and Collier, N. C., “Hydration and Properties of Sodium Sulfate Activated Slag,” Cement and Concrete Composites, V. 37, 2013, pp. 20-29. doi: 10.1016/j.cemconcomp.2012.12.010

28. Rashad, A. M.; Bai, Y.; Basheer, P. A. M.; Collier, N. C.; and Milestone, N. B., “Chemical and Mechanical Stability of Sodium Sulfate Activated Slag after Exposure to Elevated Temperature,” Cement and Concrete Research, V. 42, No. 2, 2012, pp. 333-343. doi: 10.1016/j.cemconres.2011.10.007

29. Rashad, A. M., “An Exploratory Study on Sodium Sulfate Activated Slag Modified with Portland Cement,” Materials and Structures, V. 48, No. 12, 2015, pp. 4085-4095. doi: 10.1617/s11527-014-0468-3

30. Rashad, A. M., “An Exploratory Study on Sodium Sulphate-Activated Slag Blended with Portland Cement under the Effect of Thermal Loads,” Journal of Thermal Analysis and Calorimetry, V. 119, No. 3, 2015, pp. 1535-1545. doi: 10.1007/s10973-014-4345-7

31. Rashad, A. M., and Essa, G. M. F., “Effect of Ceramic Waste Powder on Alkali-Activated Slag Pastes Cured in Hot Weather after Exposure to Elevated Temperature,” Cement and Concrete Composites, V. 111, 2020, Article No. 103617. doi: 10.1016/j.cemconcomp.2020.103617

32. Saedi, M.; Behfarnia, K.; and Soltanian, H., “The Effect of the Blaine Fineness on the Mechanical Properties of the Alkali-Activated Slag Cement,” Journal of Building Engineering, V. 26, 2019, Article No. 100897. doi: 10.1016/j.jobe.2019.100897

33. Brough, A., and Atkinson, A., “Sodium Silicate-Based, Alkali-Activated Slag Mortars: Part I. Strength, Hydration and Microstructure,” Cement and Concrete Research, V. 32, No. 6, 2002, pp. 865-879. doi: 10.1016/S0008-8846(02)00717-2

34. Yang, K.-H., and Song, J.-K., “Workability Loss and Compressive Strength Development of Cementless Mortars Activated by Combination of Sodium Silicate and Sodium Hydroxide,” Journal of Materials in Civil Engineering, ASCE, V. 21, No. 3, 2009, pp. 119-127. doi: 10.1061/(ASCE)0899-1561(2009)21:3(119)

35. Shi, Z.; Shi, C.; Wan, S.; Li, N.; and Zhang, Z., “Effect of Alkali Dosage and Silicate Modulus on Carbonation of Alkali-Activated Slag Mortars,” Cement and Concrete Research, V. 113, 2018, pp. 55-64. doi: 10.1016/j.cemconres.2018.07.005

36. Song, S., and Jennings, H. M., “Pore Solution Chemistry of Alkali-Activated Ground Granulated Blast-Furnace Slag,” Cement and Concrete Research, V. 29, No. 2, 1999, pp. 159-170. doi: 10.1016/S0008-8846(98)00212-9

37. Phair, J. W., and Van Deventer, J. S. J., “Effect of Silicate Activator pH on the Leaching and Material Characteristics of Waste-Based Inorganic Polymers,” Minerals Engineering, V. 14, No. 3, 2001, pp. 289-304. doi: 10.1016/S0892-6875(01)00002-4

38. Bernal, S. A., and Provis, J. L., “Durability of Alkali‐Activated Materials: Progress and Perspectives,” Journal of the American Ceramic Society, V. 97, No. 4, 2014, pp. 997-1008. doi: 10.1111/jace.12831

39. Aperador Chaparro, W.; Martínez Bastidas, D.; and Bautista Ruíz, J. H., “Mechanical Properties and Absorption of Chlorides in Alkali Activated Slag Concrete and Exposed to Carbonation,” Revista Facultad de Ingeniería Universidad de Antioquia (Medellín), V. 62, 2012, pp. 189-195.

40. Song, K.-I.; Song, J.-K.; Lee, B. Y.; and Yang, K.-H., “Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar,” Advances in Materials Science and Engineering, V. 2014, 2014, Article No. 326458.

41. Li, N.; Farzadnia, N.; and Shi, C., “Microstructural Changes in Alkali-Activated Slag Mortars Induced by Accelerated Carbonation,” Cement and Concrete Research, V. 100, 2017, pp. 214-226. doi: 10.1016/j.cemconres.2017.07.008

42. Cadore, D. E.; da Luz, C. A.; and de Medeiros, M. H. F., “An Investigation of the Carbonation of Alkaline Activated Cement Made from Blast Furnace Slag Generated by Charcoal,” Construction and Building Materials, V. 226, 2019, pp. 117-125. doi: 10.1016/j.conbuildmat.2019.07.209

43. Bakharev, T.; Sanjayan, J.; and Cheng, Y.-B., “Resistance of Alkali-Activated Slag Concrete to Carbonation,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1277-1283. doi: 10.1016/S0008-8846(01)00574-9

44. Zhang, J.; Shi, C.; and Zhang, Z., “Carbonation Induced Phase Evolution in Alkali-Activated Slag/Fly Ash Cements: The Effect of Silicate Modulus of Activators,” Construction and Building Materials, V. 223, 2019, pp. 566-582. doi: 10.1016/j.conbuildmat.2019.07.024

45. Bai, Y.-H.; Yu, S.; and Chen, W., “Experimental Study of Carbonation Resistance of Alkali-Activated Slag Concrete,” ACI Materials Journal, V. 116, No. 3, May 2019, pp. 95-104. doi: 10.14359/51715585

46. Navarro, R.; Alcocel, E. G.; Sánchez, I.; Garcés, P.; and Zornoza, E., “Corrosion Resistance of Steel Reinforcements Embedded in Alkali Activated Ground Granulated SiMn Slag Mortars,” Construction and Building Materials, V. 230, 2020, Article No. 116917. doi: 10.1016/j.conbuildmat.2019.116917

47. Li, Z., and Li, S., “Carbonation Resistance of Fly Ash and Blast Furnace Slag Based Geopolymer Concrete,” Construction and Building Materials, V. 163, 2018, pp. 668-680. doi: 10.1016/j.conbuildmat.2017.12.127

48. Al-Otaibi, S., “Durability of Concrete Incorporating GGBS Activated by Water-Glass,” Construction and Building Materials, V. 22, No. 10, 2008, pp. 2059-2067. doi: 10.1016/j.conbuildmat.2007.07.023

49. Zhang, J.; Shi, C.; and Zhang, Z., “Effect of Na2O Concentration and Water/Binder Ratio on Carbonation of Alkali-Activated Slag/Fly Ash Cements,” Construction and Building Materials, V. 269, 2021, Article No. 121258. doi: 10.1016/j.conbuildmat.2020.121258

50. Bilim, C., and Atiş, C. D., “Alkali Activation of Mortars Containing Different Replacement Levels of Ground Granulated Blast Furnace Slag,” Construction and Building Materials, V. 28, No. 1, 2012, pp. 708-712. doi: 10.1016/j.conbuildmat.2011.10.018

51. Adesina, A., and Kaze, C. R., “Physico-Mechanical and Microstructural Properties of Sodium Sulfate Activated Materials: A Review,” Construction and Building Materials, V. 295, 2021, Article No. 123668. doi: 10.1016/j.conbuildmat.2021.123668

52. Zhang, J.; Tan, H.; Bao, M.; Liu, X.; Luo, Z.; and Wang, P., “Low Carbon Cementitious Materials: Sodium Sulfate Activated Ultra-Fine Slag/Fly Ash Blends at Ambient Temperature,” Journal of Cleaner Production, V. 280, Part 1, 2021, Article No. 124363. doi: 10.1016/j.jclepro.2020.124363

53. Nedeljković, M.; Ghiassi, B.; van der Laan, S.; Li, Z.; and Ye, G., “Effect of Curing Conditions on the Pore Solution and Carbonation Resistance of Alkali-Activated Fly Ash and Slag Pastes,” Cement and Concrete Research, V. 116, 2019, pp. 146-158. doi: 10.1016/j.cemconres.2018.11.011

54. Reeder, R. J., ed., Carbonates: Mineralogy and Chemistry, Walter de Gruyter GmbH & Co. KG, Berlin, Germany, 2018.

55. Black, L.; Breen, C.; Yarwood, J.; Garbev, K.; Stemmermann, P.; and Gasharova, B., “Structural Features of C–S–H(I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases,” Journal of the American Ceramic Society, V. 90, No. 3, 2007, pp. 908-917. doi: 10.1111/j.1551-2916.2006.01429.x

56. Nedeljković, M.; Zuo, Y.; Arbi, K.; and Ye, G., “Carbonation Resistance of Alkali-Activated Slag under Natural and Accelerated Conditions,” Journal of Sustainable Metallurgy, V. 4, No. 1, 2018, pp. 33-49. doi: 10.1007/s40831-018-0166-4

57. Nedeljković, M.; Šavija, B.; Zuo, Y.; Luković, M.; and Ye, G., “Effect of Natural Carbonation on the Pore Structure and Elastic Modulus of the Alkali-Activated Fly Ash and Slag Pastes,” Construction and Building Materials, V. 161, 2018, pp. 687-704. doi: 10.1016/j.conbuildmat.2017.12.005

58. Ye, H., and Chen, Z., “Influence of Nitrate Corrosion Inhibitors on Phase Stability of Alkali-Activated Slag against Chloride Binding and Natural Carbonation,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 8, 2019, p. 04019160. doi: 10.1061/(ASCE)MT.1943-5533.0002830

59. Bernal, S. A.; de Gutierrez, R. M.; Provis, J. L.; and Rose, V., “Effect of Silicate Modulus and Metakaolin Incorporation on the Carbonation of Alkali Silicate-Activated Slags,” Cement and Concrete Research, V. 40, No. 6, 2010, pp. 898-907. doi: 10.1016/j.cemconres.2010.02.003

60. Samarakoon, M. H.; Ranjith, P. G.; Xiao, F.; Avanthi Isaka, B. L.; and Gajanayake, S. M., “Carbonation-Induced Properties of Alkali-Activated Cement Exposed to Saturated and Supercritical CO2,” International Journal of Greenhouse Gas Control, V. 110, 2021, p. 103429. doi: 10.1016/j.ijggc.2021.103429

61. Bernal, S. A.; San Nicolas, R.; Provis, J. L.; de Gutiérrez, R. M.; and van Deventer, J. S. J., “Natural Carbonation of Aged Alkali-Activated Slag Concretes,” Materials and Structures, V. 47, No. 4, 2014, pp. 693-707. doi: 10.1617/s11527-013-0089-2

62. Rashad, A. M., “Influence of Different Additives on the Properties of Sodium Sulfate Activated Slag,” Construction and Building Materials, V. 79, 2015, pp. 379-389. doi: 10.1016/j.conbuildmat.2015.01.022


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer