Encapsulated Admixtures with Temporary Coatings for Delayed Delivery of Core Material—Review

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Encapsulated Admixtures with Temporary Coatings for Delayed Delivery of Core Material—Review

Author(s): Kapilraj Natkunarajah, Koneswaran Masilamani, D. A. S. Amarasinghe, and Dinesh Attygalle

Publication: Materials Journal

Volume: 120

Issue: 1

Appears on pages(s): 133-142

Keywords: delayed delivery; encapsulation; microcapsules; pH changes; soluble coating

DOI: 10.14359/51737288

Date: 1/1/2023

Abstract:
Encapsulated admixtures in concrete have emerged as a prospective material to be used in future constructions. The core material is temporarily protected by the shell material, which also prevents the core from reacting with the concrete environment. The shell can be made of a pH-sensitive material that can deliver the core material based on the pH of environment rather than through mechanical rupture. The initial high alkaline nature of the concrete (pH 13.5) during the hydration and subsequent pH reducing conditions (by the environmental factors) can be used to design the delivery time of the core material. The coatings can be used to deliver the core material either within a short period or after a long period. The delivery of the core material at a desirable time can be achieved by the selection of a suitable coating agent.

Related References:

1. Shetty, M. S., and Jain, A. K., Concrete Technology: Theory and Practice, eighth edition, S. Chand Publishing, New Delhi, India, 2019.

2. Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; and Polder, R., Corrosion of Steel in Concrete, Wiley Online Library, 2013.

3. Plusquellec, G.; Geiker, M. R.; Lindgård, J.; Duchesne, J.; Fournier, B.; and De Weerdt, K., “Determination of the pH and the Free Alkali Metal Content in the Pore Solution of Concrete: Review and Experimental Comparison,” Cement and Concrete Research, V. 96, 2017, pp. 13-26. doi: 10.1016/j.cemconres.2017.03.002

4. Leung, C. K. Y.; Zhu, H. G.; Kim, J. K.; and Woo, R. S. C., “Use of Polymer/Organoclay Nanocomposite Surface Treatment as Water/Ion Barrier for Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 20, No. 7, 2008, pp. 484-492. doi: 10.1061/(ASCE)0899-1561(2008)20:7(484)

5. Batis, G.; Pantazopoulou, P.; and Routoulas, A., “Corrosion Protection Investigation of Reinforcement by Inorganic Coating in the Presence of Alkanolamine-Based Inhibitor,” Cement and Concrete Composites, V. 25, No. 3, 2003, pp. 371-377. doi: 10.1016/S0958-9465(02)00061-6

6. Batis, G.; Routoulas, A.; and Rakanta, E., “Effects of Migrating Inhibitors on Corrosion of Reinforcing Steel Covered with Repair Mortar,” Cement and Concrete Composites, V. 25, No. 1, 2003, pp. 109-115. doi: 10.1016/S0958-9465(01)00047-6

7. Lothenbach, B.; Le Saout, G.; Gallucci, E.; and Scrivener, K., “Influence of Limestone on the Hydration of Portland Cements,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 848-860. doi: 10.1016/j.cemconres.2008.01.002

8. Ochs, M.; Mallants, D.; and Wang, L., Radionuclide and Metal Sorption on Cement and Concrete, Springer, 2016.

9. Balaguru, P., and Chong, K., “Nanotechnology and Concrete: Research Opportunities,” Nanotechnology of Concrete: Recent Developments and Future Perspectives, SP-254, K. Sobolev and S. P. Shah, eds., American Concrete Institute, Farmington Hills, MI, 2006, pp. 15-28.

10. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; and Viswanathan, S., “Autonomic Healing of Polymer Composites,” Nature, V. 409, No. 6822, 2001, pp. 794-797. doi: 10.1038/35057232

11. Van Belleghem, B.; Van Tittelboom, K.; and De Belie, N., “Efficiency of Self-Healing Cementitious Materials with Encapsulated Polyurethane to Reduce Water Ingress Through Cracks,” Materiales de Construcción, V. 68, No. 330, 2018, doi: 10.3989/mc.2018.05917

12. Dong, B.; Wang, Y.; Fang, G.; Han, N.; Xing, F.; and Lu, Y., “Smart Releasing Behavior of a Chemical Self-Healing Microcapsule in the Stimulated Concrete Pore Solution,” Cement and Concrete Composites, V. 56, 2015, pp. 46-50. doi: 10.1016/j.cemconcomp.2014.10.006

13. Zuo, J.; Zhan, J.; Dong, B.; Luo, C.; Liu, Q.; and Chen, D., “Preparation of Metal Hydroxide Microcapsules and the Effect on pH Value of Concrete,” Construction and Building Materials, V. 155, 2017, pp. 323-331. doi: 10.1016/j.conbuildmat.2017.07.155

14. Ghosh, S. K., Functional Coatings: By Polymer Microencapsulation, Wiley Online Library, 2006. doi: 10.1002/3527608478

15. Alonso, M. C.; Garcia Calvo, J. L.; and Walker, C., “Development of an Accurate pH Measurement Methodology for the Pore Fluids of Low pH Cementitious Materials,” Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 2012, https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/014/44014735.pdf?r=1. (last accessed Jan. 27, 2023)

16. Vollpracht, A.; Lothenbach, B.; Snellings, R.; and Haufe, J., “The Pore Solution of Blended Cements: A Review,” Materials and Structures, V. 49, No. 8, 2016, pp. 3341-3367. doi: 10.1617/s11527-015-0724-1

17. Basheer, M. P. A.; Grattan, K. T. V.; Sun, T.; Long, A. E.; McPolin, D.; and Xie, W., “Fiber Optic Chemical Sensor Systems for Monitoring pH Changes in Concrete,” Advanced Environmental, Chemical, and Biological Sensing Technologies II, International Society for Optics and Photonics, 2004, pp. 144-153.

18. Pu, Q.; Jiang, L.; Xu, J.; Chu, H.; Xu, Y.; and Zhang, Y., “Evolution of pH and Chemical Composition of Pore Solution in Carbonated Concrete,” Construction and Building Materials, V. 28, No. 1, 2012, pp. 519-524. doi: 10.1016/j.conbuildmat.2011.09.006

19. Behnood, A.; Van Tittelboom, K.; and De Belie, N., “Methods for Measuring pH in Concrete: A Review,” Construction and Building Materials, V. 105, 2016, pp. 176-188. doi: 10.1016/j.conbuildmat.2015.12.032

20. Natkunarajah, K.; Masilamani, K.; Maheswaran, S.; Lothenbach, B.; Amarasinghe, D. A. S.; and Attygalle, D., “Analysis of the Trend of pH Changes of Concrete Pore Solution During the Hydration by Various Analytical Methods,” Cement and Concrete Research, V. 156, 2022, p. 106780. doi: 10.1016/j.cemconres.2022.106780

21. Rothstein, D.; Thomas, J. J.; Christensen, B. J.; and Jennings, H. M., “Solubility Behavior of Ca-, S-, Al-, and Si-bearing Solid Phases in Portland Cement Pore Solutions as a Function of Hydration Time,” Cement and Concrete Research, V. 32, No. 10, 2002, pp. 1663-1671. doi: 10.1016/S0008-8846(02)00855-4

22. Stumm, W., and Morgan, J. J., Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, John Wiley & Sons, New York, 2012.

23. Procházka, L., and Boháčová, J., “The Role of Alkalis in Hydraulic Mixtures,” Materials Science Forum, Trans Tech Publication, 2019, pp. 62-67.

24. Deschner, F.; Winnefeld, F.; Lothenbach, B.; Seufert, S.; Schwesig, P.; Dittrich, S.; Goetz-Neunhoeffer, F.; and Neubauer, J., “Hydration of Portland Cement with High Replacement by Siliceous Fly Ash,” Cement and Concrete Research, V. 42, No. 10, 2012, pp. 1389-1400. doi: 10.1016/j.cemconres.2012.06.009

25. Taylor, H. F. W., Cement Chemistry, Thomas Telford, London, UK, 1997.

26. Zajac, M.; Skocek, J.; Lothenbach, B.; and Mohsen, B. H., “Late Hydration Kinetics: Indications from Thermodynamic Analysis of Pore Solution Data,” Cement and Concrete Research, V. 129, 2020, pp. 1-12. doi: 10.1016/j.cemconres.2020.105975

27. Mota, B.; Matschei, T.; and Scrivener, K., “Impact of Sodium Gluconate on White Cement-Slag Systems with Na2SO4,” Cement and Concrete Research, V. 122, 2019, pp. 59-71. doi: 10.1016/j.cemconres.2019.04.008

28. Kocaba, V., “Development and Evaluation of Methods to Follow Microstructural Development of Cementitious Systems Including Slags,” doctoral thesis, École Polytechnique Fédérale de Lausanne, Lausanne Switzerland, 2009.

29. Hesse, C.; Goetz-Neunhoeffer, F.; and Neubauer, J., “A New Approach in Quantitative In-Situ XRD of Cement Pastes: Correlation of Heat Flow Curves with Early Hydration Reactions,” Cement and Concrete Research, V. 41, No. 1, 2011, pp. 123-128. doi: 10.1016/j.cemconres.2010.09.014

30. Gallucci, E.; Mathur, P.; and Scrivener, K., “Microstructural Development of Early Age Hydration Shells around Cement Grains,” Cement and Concrete Research, V. 40, No. 1, 2010, pp. 4-13. doi: 10.1016/j.cemconres.2009.09.015

31. Martirena-Hernandez, J. F.; Alujas-Díaz, A.; and Amador-Hernandez, M., Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete, 2020. doi: 10.1007/978-3-030-22034-1

32. Quennoz, A., “Hydration of C3A with Calcium Sulfate Alone and in the Presence of Calcium Silicate,” doctoral thesis, École Polytechnique Fédérale de Lausanne, Lausanne Switzerland, 2011. doi: 10.5075/epfl-thesis-5035

33. Potgieter, J. H., and Kaspar, H., “Hydration of Cement,” South African Journal of Chemistry. Suid-Afrikaanse Tydskrif vir Chemie, V. 52, 1999, pp. 104-109.

34. Aïtcin, P., “3 - Portland Cement,” Science and Technology of Concrete Admixtures, Elsevier Ltd, 2016, pp. 27-51. doi: 10.1016/B978-0-08-100693-1.00003-5

35. Setunge, S.; Nguyen, N.; Alexander, B. L.; and Dutton, L., “Leaching of Alkali from Concrete in Contact with Waterways,” Water, Air, and Soil Pollution Focus, V. 9, 2009, pp. 381-391. doi: 10.1007/s11267-009-9234-x

36. Famy, C.; Scrivener, K. L.; Atkinson, A.; and Brough, A. R., “Influence of the Storage Conditions on the Dimensional Changes of Heat-Cured Mortars,” Cement and Concrete Research, V. 31, No. 5, 2001, pp. 795-803. doi: 10.1016/S0008-8846(01)00480-X

37. Sumra, Y.; Payam, S.; and Zainah, I., “The pH of Cement-based Materials: A Review,” Journal of Wuhan University Technology-Mater Sci. Ed., V. 35, No. 5, 2020, pp. 908-924. doi: 10.1007/s11595-020-2337-y

38. Rivard, P.; Bérubé, M. A.; Ollivier, J. P.; and Ballivy, G., “Decrease of Pore Solution Alkalinity in Concrete Tested for Alkali-Silica Reaction,” Materials and Structures, V. 40, No. 9, 2007, pp. 909-921. doi: 10.1617/s11527-006-9191-z

39. Chess, P., and Green, W., Durability of Reinforced Concrete Structures, CRC Press, Boca Raton, FL, 2019.

40. Kulik, D. A.; Miron, G. D.; and Lothenbach, B., “A Structurally-Consistent CASH+ Sublattice Solid Solution Model for Fully Hydrated CSH Phases: Thermodynamic Basis, Methods, and Ca-Si-H2O Core Sub-Model,” Cement and Concrete Research, V. 151, 2022, p. 106585. doi: 10.1016/j.cemconres.2021.106585

41. Berner, U. R., “Evolution Of Pore Water Chemistry During Degradation of Cement in a Radioactive Waste Repository Environment,” Waste Management (New York, N.Y.), V. 12, No. 2-3, 1992, pp. 201-219. doi: 10.1016/0956-053X(92)90049-O

42. Neall, F. B., “Modelling of the Near-Field Chemistry of the SMA Repository at the Wellenberg Site,” Paul Scherrer Institute, Würenlingen, Switzerland, 1994.

43. Jacques, D., “Benchmarking of the Cement Model and Detrimental Chemical Reactions Including Temperature Dependent Parameters,” NIRAS-MP5-03 DATA-LT(NF) Version 1, Belgian National Agency for Radioactive Waste and enriched Fissile Material, Brussels, Belgium, 2009.

44. Johannesson, B., and Utgenannt, P., “Microstructural Changes Caused by Carbonation of Cement Mortar,” Cement and Concrete Research, V. 31, No. 6, 2001, pp. 925-931. doi: 10.1016/S0008-8846(01)00498-7

45. Lin, X., “Effect of Early Age Carbonation on Strength and pH of Concrete,” master’s thesis, McGill University, Montreal, QC, Canada, 2007.

46. Huang, C. K.; Lou, W. M.; Tsai, C. J.; Wu, T. C.; and Lin, H. Y., “Mechanical Properties of Polymer Thin Film Measured by the Bulge Test,” Thin Solid Films, V. 515, No. 18, 2007, pp. 7222-7226. doi: 10.1016/j.tsf.2007.01.058

47. Thiery, M., “Modélisation de la Carbonatation Atmosphérique des Matériaux Cimentaires: Prise en Compte des Effets Cinétiques et des Modifications Microstructurales et Hydriques,” Etudes Rech. Des Lab. Des Ponts Chaussees-Serie Ouvrages D’Art, 2006.

48. Richardson, M. G., Carbonation of Reinforced Concrete: Its Causes and Management, Citis, 1988.

49. Chang, C. F., and Chen, J. W., “The Experimental Investigation of Concrete Carbonation Depth,” Cement and Concrete Research, V. 36, No. 9, 2006, pp. 1760-1767. doi: 10.1016/j.cemconres.2004.07.025

50. Matsushita, F.; Aono, Y.; and Shibata, S., “Carbonation Degree of Autoclaved Aerated Concrete,” Cement and Concrete Research, V. 30, No. 11, 2000, pp. 1741-1745. doi: 10.1016/S0008-8846(00)00424-5

51. Neville, A. M., and Brooks, J. J., Concrete Technology, Longman Scientific & Technical, 1987.

52. Farah, M.; Grondin, F.; Guo, M.; Loukili, A.; and Rozière, E., “Carbonation of Concrete in a Climate Change Context,” Risk Evaluation and Climate Change Adaptation of Civil Engineering Infrastructures and Buildings, Project RI‐ADAPTCLIM, 2019, pp. 85-104.

53. Houst, Y., “Carbonatation, Diffusion de Gaz et Retrait de la Pâte de Ciment Durcie,” 1992.

54. Rogers, C. A., and Hooton, R. D., “Reduction in Mortar and Concrete Expansion with Reactive Aggregates Due to Alkali Leaching,” Cement, Concrete and Aggregates, V. 13, No. 1, 1991, pp. 42-49. doi: 10.1520/CCA10548J

55. Lothenbach, B.; Winnefeld, F.; Alder, C.; Wieland, E.; and Lunk, P., “Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes,” Cement and Concrete Research, V. 37, No. 4, 2007, pp. 483-491. doi: 10.1016/j.cemconres.2006.11.016

56. Ye, G., “Percolation of Capillary Pores in Hardening Cement Pastes,” Cement and Concrete Research, V. 35, No. 1, 2005, pp. 167-176. doi: 10.1016/j.cemconres.2004.07.033

57. Riley, M. A., “Coated Fibers for Enhanced Concrete Structural Reinforcement,” U.S. patent 11021394B2, 2019.

58. Aoyama, T.; Hayashi, Y.; Toba, H.; Yoshida, A.; Goto, K.; and Kawakama, M., “Exposed Aggregate Finishing Method for Concrete,” U.S. patent 4205040A, 1980.

59. Ali, U.; Karim, K. J. B. A.; and Buang, N. A., “A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA),” Polymer Reviews, V. 55, No. 4, 2015, pp. 678-705. doi: 10.1080/15583724.2015.1031377

60. Yang, Z.; Peng, H.; Wang, W.; and Liu, T., “Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites,” Journal of Applied Polymer Science, V. 116, 2010, pp. 2658-2667. doi: 10.1002/app.31787

61. Minelga, D.; Ukvalbergiene, K.; Baltrušaitis, A.; and Balčiunas, G., “Adhesion Properties Between Polyvinyl Acetate Dispersion and Ammonia Modified Oak Wood,” Medžiagotyra., V. 19, No. 2, 2013, pp. 164-168. doi: 10.5755/j01.ms.19.2.4433

62. Wheeler, O. L.; Ernst, S. L.; and Crozier, R. N., “Molecular Weight Degradation of Polyvinyl Acetate On Hydrolysis,” Journal of Polymer Science. Polymer Physics Edition, V. 8, 1952, pp. 409-423. doi: 10.1002/pol.1952.120080405

63. Brydson, J. A., “14 - Poly(vinyl acetate) and its Derivatives,” Plastic Materials, seventh edition, Butterworth-Heinemann, Oxford, UK, 1999, pp. 386-397. doi: 10.1016/B978-075064132-6/50055-3

64. Kolter, K.; Bodmeier, R.; and Dashevskiy, A., “Combination of Polyvinyl Acetate with Water-Insoluble, Acid-Insoluble, or Alkali-Insoluble Polymers used for the Production of Film Coatings with Highly Controlled Release and High Stability,” U.S. patent 20050106252A1, 2009.

65. Pelto, J.; Leivo, M.; Gruyaert, E.; Debbaut, B.; Snoeck, D.; and De Belie, N., “Application of Encapsulated Superabsorbent Polymers in Cementitious Materials for Stimulated Autogenous Healing,” Smart Materials and Structures, V. 26, No. 10, 2017, p. 105043. doi: 10.1088/1361-665X/aa8497

66. Wang, Y.; Fang, G.; Ding, W.; Han, N.; Xing, F.; and Dong, B., “Self-Immunity Microcapsules for Corrosion Protection of Steel Bar in Reinforced Concrete,” Scientific Reports, V. 5, No. 1, 2015, pp. 1-8. doi: 10.1038/srep18484

67. Dong, B.; Ding, W.; Qin, S.; Han, N.; Fang, G.; Liu, Y.; Xing, F.; and Hong, S., “Chemical Self-Healing System with Novel Microcapsules for Corrosion Inhibition of Rebar in Concrete,” Cement and Concrete Composites, V. 85, 2018, pp. 83-91. doi: 10.1016/j.cemconcomp.2017.09.012

68. Rekhi, G. S., and Jambhekar, S. S., “Ethylcellulose—A Polymer Review,” Drug Development and Industrial Pharmacy, V. 21, No. 1, 1995, pp. 61-77. doi: 10.3109/03639049509048096

69. Burrell, H., and Immergut, B., Polymer Handbook, second edition, John Wiley, New York, 1975.

70. Gooch, J. W., “Ethyl Cellulose,” Encyclopedia Dictionary of Polymers, V. 4, 2011, pp. 277. doi: 10.1007/978-1-4419-6247-8_4553

71. Florence, A. T., Materials Used in Pharmaceutical Formulation, Blackwell Oxford, 1984.

72. Rowe, R. C., “The Effect of the Molecular Weight of Ethyl Cellulose on the Drug Release Properties of Mixed Films of Ethyl Cellulose and Hydroxypropylmethylcellulose,” International Journal of Pharmaceutics, V. 29, No. 1, 1986, pp. 37-41. doi: 10.1016/0378-5173(86)90197-3

73. Lv, L.; Yang, Z.; Chen, G.; Zhu, G.; Han, N.; Schlangen, E.; and Xing, F., “Synthesis and Characterization of a New Polymeric Microcapsule and Feasibility Investigation in Self-Healing Cementitious Materials,” Construction and Building Materials, V. 105, 2016, pp. 487-495. doi: 10.1016/j.conbuildmat.2015.12.185

74. Zuo, J.; Dong, B.; Xing, F.; Luo, C.; Zhan, J.; and Wang, L., “Preparation and Behavior of Sustained-Release Corrosion Inhibitor Microcapsules by Centrifugation-Coating Method,” Powder Technology, V. 389, 2021, pp. 32-39. doi: 10.1016/j.powtec.2021.04.098

75. Feng, J.; Dong, H.; Wang, R.; and Su, Y., “A Novel Capsule by Poly (Ethylene Glycol) Granulation for Self-Healing Concrete,” Cement and Concrete Research, V. 133, 2020, p. 106053. doi: 10.1016/j.cemconres.2020.106053

76. Mostavi, E.; Asadi, S.; Hassan, M. M.; and Alansari, M., “Evaluation of Self-Healing Mechanisms in Concrete with Double-Walled Sodium Silicate Microcapsules,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 12, 2015, p. 04015035. doi: 10.1061/(ASCE)MT.1943-5533.0001314

77. Sidiq, A.; Gravina, R. J.; Setunge, S.; and Giustozzi, F., “Microstructural Analysis of Healing Efficiency in Highly Durable Concrete,” Construction and Building Materials, V. 215, 2019, pp. 969-983. doi: 10.1016/j.conbuildmat.2019.04.233

78. Wang, X.; Huang, Y.; Zhang, J.; Fang, C.; Yu, K.; Chen, Q.; Li, T.; Han, R.; Yang, Z.; Xu, P.; Liang, G.; Su, D.; Ding, X.; Li, D.; Han, N.; and Xing, F., “Laboratory And Field Study on the Performance of Microcapsule-Based Self-Healing Concrete in Tunnel Engineering,” Construction and Building Materials, V. 220, 2019, pp. 90-101. doi: 10.1016/j.conbuildmat.2019.06.017

79. Hassan, M. M.; Milla, J.; Rupnow, T.; Al-Ansari, M.; and Daly, W. H., “Microencapsulation of Calcium Nitrate for Concrete Applications,” Transportation Research Record: Journal of the Transportation Research Board, V. 2577, No. 1, 2016, pp. 8-16. doi: 10.3141/2577-02

80. Gilford, J. III; Hassan, M. M.; Rupnow, T.; Barbato, M.; Okeil, A.; and Asadi, S., “Dicyclopentadiene and Sodium Silicate Microencapsulation for Self-Healing of Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 26, No. 5, 2014, pp. 886-896. doi: 10.1061/(ASCE)MT.1943-5533.0000892

81. Hassan, M. M.; Milla, J.; Rupnow, T.; Al-Ansari, M.; and Daly, W. H., “Microencapsulation of Calcium Nitrate for Concrete Applications,” Transportation Research Record: Journal of the Transportation Research Board, V. 2577, No. 1, 2016, pp. 8-16. doi: 10.3141/2577-02

82. Milla, J.; Hassan, M. M.; Rupnow, T.; and Daly, W. H., “Measuring the Crack-Repair Efficiency of Steel Fiber Reinforced Concrete Beams with Microencapsulated Calcium Nitrate,” Construction and Building Materials, V. 201, 2019, pp. 526-538. doi: 10.1016/j.conbuildmat.2018.12.193


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer