Properties Analysis of Ultra-High-Performance Concrete with Recycled Glass and Limestone Powders

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Properties Analysis of Ultra-High-Performance Concrete with Recycled Glass and Limestone Powders

Author(s): D. C. Jaramillo-Murcia, J. Abellán-García, N. Torres-Castellanos, and E. García-Castaño

Publication: Materials Journal

Volume: 119

Issue: 5

Appears on pages(s): 153-164

Keywords: cost-efficient and eco-friendly ultra-high-performance concrete (UHPC); durability; limestone powder; mechanical properties; mineral admixtures; recycled glass powder

DOI: 10.14359/51736006

Date: 9/1/2022

Abstract:
Ultra-high-performance concrete (UHPC) is a cement-based material whose superior mechanical and durability features are ascribed to its enhanced microstructure. Nonetheless, large amounts of cement and other expensive components are usually necessary to achieve that particular microstructure, leading to higher costs and carbon footprint than standard concretes. Even though several pieces of research have focused on the employ of mineral admixtures as partial replacement of cement and silica fume while maintaining a compressive strength of over 150 MPa, there is a lack of knowledge on how these additions affect other properties of UHPC. This research paper aims to fill that gap in the Colombian case by analyzing the mechanical properties (compressive strength, modulus of elasticity) and durability (ultrasonic pulse velocity, volume of permeable voids, and chloride ion penetration) of two optimized, cost-efficient, and eco-friendly UHPC dosages containing locally available and low-cost mineral admixtures, encompassing two economically viable milled waste glass powders with an average particle size of 7 and 28 microns, and limestone powder. The results were compared with those obtained for a control mixture, which contained high amounts of cement and silica fume as cementitious materials. The conclusions showed that limestone and recycled glass powders reduce both the high-range water-reducing admixture (HRWRA) and the time of the mixing procedure, leading to a relevant decrease in the production costs. Cost-efficient and eco-friendly UHPCs’ mechanical and durability properties were minor but in the same range as the reference mixture. However, the UHPC dosage incorporating limestone and 28-micron glass powders implied a reduction in cement by 31% and material costs by 32.5% from the reference. In comparison, the dosage in that addition contained 7 microns of glass powder which led to a lessening of 29% in cement and 33.5% in final costs. These outcomes endorsed using limestone and recycled glass powders to develop low-cost and eco-friendly UHPC in Colombia.

Related References:

1. Tagnit-Hamou, A.; Soliman, N. A.; and Omran, A., “Green Ultra-High-Performance Glass Concrete,” First International Interactive Symposium on UHPC, 2016, pp. 1-10.

2. Abellán-García, J., “K-Fold Validation Neural Network Approach for Predicting the One-Day Compressive Strength of UHPC,” Advances in Civil Engieering Materials, 2021, pp. 223-243. doi:10.1520/ACEM20200055

3. Abellán-Garcia, J.; Santofimio-Vargas, M. A.; and Torres-Castellanos, N., “Analysis of Metakaolin as Partial Substitution of Ordinary Portland Cement in Reactive Powder Concrete,” Advances in Civil Engineering Materials, V. 9, No. 1, 2020. doi: 10.1520/ACEM20190224

4. Nehdi, M.; Abbas, S.; and Soliman, A., “Exploratory Study of Ultra-High Performance Fiber Reinforced Concrete Tunnel Lining Segments with Varying Steel Fiber Lengths and Dosages,” Engineering Structures, V. 101, 2015, pp. 733-742. doi: 10.1016/j.engstruct.2015.07.012

5. ACI Committee 239, “Ultra-High Performance Concrete: An Emerging Technology Report (ACI 239R-18),” American Concrete Institute, Farmington Hills, MI, 2018, 21 pp.

6. Ahmad, S.; Hakeem, I.; and Maslehuddin, M., “Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand,” European Journal of Environmental and Civil Engineering, V. 2014, 2014, pp. 1106-1126. doi: 10.1155/2014/713531

7. Habel, K.; Charron, J.-P.; Braike, S.; Hooton, R. D.; Gauvreau, P.; and Massicotte, B., “Ultra-High Performance Fibre Reinforced Concrete Mix Design in Central Canada,” Canadian Journal of Civil Engineering, V. 35, No. 2, 2008, pp. 217-224. doi: 10.1139/L07-114

8. Abellán-García, J.; Fernández-Gómez, J. A.; Torres-Castellanos, N.; and Núñez-López, A. M., “Machine Learning Prediction of Flexural Behavior of UHPFRC,” Fibre Reinforced Concrete: Improvements and Innovations, RILEM Bookseries, Valencia, Spain, 2020, pp. 570-583. doi: 10.1007/978-3-030-58482-5_52

9. Abellán-García, J., and Guzmán-Guzmán, J. S., “Random Forest-Based Optimization of UHPFRC Under Ductility Requirements for Seismic Retrofitting Applications,” Construction and Building Materials, V. 285, 2021, p. 122869. doi: 10.1016/j.conbuildmat.2021.122869

10. Abellán-García, J.; Fernández-Gómez, J.; Torres-Castellanos, N.; and Núñez-López, A., “Tensile Behavior of Normal Strength Steel Fiber Green UHPFRC,” ACI Materials Journal, V. 118, No. 1, Jan. 2021, pp. 127-138. doi: 10.14359/51725992

11. Abellán-García, J.; Guzmán-Guzmán, J. S.; Sánchez-Díaz, J. A.; and Rojas-Grillo, J., “Experimental Validation of Artificial Intelligence Model for the Energy Absorption Capacity of UHPFRC,” Dyna (Bilbao), V. 88, 2021, pp. 150-159. doi: 10.15446/dyna.v88n217.86961

12. Abellán-García, J., “Dosage Optimization and Seismic Retrofitting Applications of Ultra-High-Performance Fiber Reinforced Concrete (UHPFRC),” Polytechnic University of Madrid, Madrid, Spain, 2020.

13. Abellán-García, J.; Ortega-Guzmán, J. J.; Chaparro-Ruiz, D. A.; and García-Castaño, E., “A Comparative Study of LASSO and ANN Regressions for the Prediction of the Direct Tensile Behavior of UHPFRC,” Advances in Civil Engineering Materials, V. 11, No. 1, 2022, p. 20210101. doi: 10.1520/ACEM20210101

14. Shi, C.; Wu, Z.; Xiao, J.; Wang, D.; Huang, Z.; and Fang, Z., “A Review on Ultra High Performance Concrete: Part I. Raw Materials and Mixture Design,” Construction and Building Materials, V. 101, 2015, pp. 741-751. doi: 10.1016/j.conbuildmat.2015.10.088

15. Neira Medina, A.; Abellán-García, J.; and Torres-Castellanos, N., “Flexural Behavior of Environmentally Friendly Ultra-High-Performance Concrete with Locally Available Low-Cost Synthetic Fibers,” European Journal of Environmental and Civil Engineering, June 2021, pp. 1-24. doi: 10.1080/19648189.2021.1938686

16. Lowke, D.; Stengel, T.; Schießl, P.; and Gehlen, C., “Control of Rheology, Strength and Fibre Bond of UHPC with Additions - Effect of Packing Density and Addition Type,” Materials Science, 2012, pp. 215-224.

17. Nguyen, N.-H.; Abellán-García, J.; Lee, S.; Garcia-Castano, E.; and Vo, T. P., “Efficient Estimating Compressive Strength of Ultra-High Performance Concrete Using Xgboost Model,” Journal of Building Engineering, V. 52, 2022, p. 104302. doi: 10.1016/j.jobe.2022.104302

18. Abellán-García, J.; Sánchez-Díaz, J.; and Ospina-Becerra, V., “Neural Network-Based Optimization of Fibers for Seismic Retrofitting Applications of UHPFRC,” European Journal of Environmental and Civil Engineering, June, 2021, doi: 10.1080/19648189.2021.1938687

19. de Larrard, F., and Sedran, T., “Optimization of Ultra-High-Performance Concrete by the Use of a Packing Model,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 997-1009. doi: 10.1016/0008-8846(94)90022-1

20. Aghdasi, P.; Heid, A. E.; and Chao, S. H., “Developing Ultra-High-Performance Fiber-Reinforced Concrete for Large-Scale Structural Applications,” ACI Materials Journal, V. 113, No. 5, Sept.-Oct. 2016, pp. 559-569. doi: 10.14359/51689103

21. Shi, C.; Wu, Z.; Xiao, J.; Wang, D.; Huang, Z.; and Fang, Z., “A Review on Ultra High Performance Concrete: Part II. Hydration, Microstructure and Properties,” Construction and Building Materials, V. 96, 2015, pp. 368-377. doi: 10.1016/j.conbuildmat.2015.08.095

22. Wang, D.; Shi, C.; Wu, Z.; Xiao, J.; Huang, Z.; and Fang, Z., “Durability of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) under Progressive Aging,” Cement and Concrete Research, V. 55, 2015, pp. 1-13. doi: 10.1016/j.cemconres.2013.09.008

23. Abellán-García, J.; Fernández-Gómez, J.; and Torres-Castellanos, N., “Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks,” European Journal of Environmental and Civil Engineering, 2020, pp. 1-25. doi: 10.1080/19648189.2020.1762749

24. Abellán-García, J.; Fernández, J.; Torres, N.; and Núñez, A., “Development of Cost-Efficient UHPC with Local Materials in Colombia,” B. Middendorf, E. Fehling, and A. Wetzel, eds., Proceedings, Hipermat 2020 - 5th International Symposium on UHPC, Nanotechnology Construction Materials, University of Kassel, Kassel, Germany, 2020, pp. 97-98.

25. Abellán-García, J., “Four-Layer Perceptron Approach for Strength Prediction of UHPC,” Construction and Building Materials, V. 256, 2020, p. 119465. doi: 10.1016/j.conbuildmat.2020.119465

26. Aghdasi, P., and Ostertag, C. P., “Green Ultra-High Performance Fiber-Reinforced Concrete (G-UHP-FRC),” Construction and Building Materials, V. 190, 2018, pp. 246-254. doi: 10.1016/j.conbuildmat.2018.09.111

27. Abellán-García, J.; Núñez-López, A.; Torres-Castellanos, N.; and Fernández-Gómez, J., “Effect of FC3R on the Properties of Ultra-High-Performance Concrete with Recycled Glass,” Dyna (Bilbao), V. 86, No. 211, 2019, pp. 84-93. doi: 10.15446/dyna.v86n211.79596

28. Abellán-García, J.; Torres-Castellanos, N.; Fernández-Gómez, J. A.; and Núñez-López, A. M., “Ultra-High-Performance Concrete with Local High Unburned Carbon Fly Ash,” Dyna (Bilbao), V. 88, No. 216, 2021, pp. 38-47. doi: 10.15446/dyna.v88n216.89234

29. Abellán-García, J.; Núñez-López, A.; Torres-Castellanos, N.; and Fernández-Gómez, J., “Factorial Design of Reactive Powder Concrete Containing Electric Arc Slag Furnace and Recycled Glass Powder,” Dyna (Bilbao), V. 87, No. 213, 2020, pp. 42-51. doi: 10.15446/dyna.v87n213.82655

30. Funk, J. E., and Dinger, D. R., Predictive Process Control Of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing, Springer Science, New York, 1994. doi: 10.1007/978-1-4615-3118-0

31. Mishra, O., and Singh, S. P., “An Overview of Microstructural and Material Properties of Ultra-High-Performance Concrete,” Journal of Sustainable Cement-Based Materials, V. 8, No. 2, 2019, pp. 97-143. doi: 10.1080/21650373.2018.1564398

32. Tayeh, B. A.; Abu Bakar, B. H.; Megat Johari, M. A.; and Voo, Y. L., “Utilization of Ultra-High Performance Fibre Concrete (UHPFC) for Rehabilitation – A Review,” Procedia Engineering, V. 54, 2013, pp. 525-538. doi: 10.1016/j.proeng.2013.03.048

33. Kalny, M.; Kvasnicka, V.; and Komanec, J., “First Practical Applications of UHPC in the Czech Republic,” E. Fehling, B. Middendorf, and J. Thiemicke, eds., Proceedings, Hipermat 2016 - 4th International Symposium on UHPC Nanotechnology Construction Materials, Kassel, Germany, 2016, pp. 147-148.

34. Abellán-García, J.; Núñez, A.; and Arango, S., “Pedestrian Bridge of UNAL in Manizales : A New UPHFRC Application in the Colombian Building Market,” B. Middendorf, E. Fehling, and. Wetzel, eds., Proceedings, Hipermat – 5th International Symposium on UHPC, Nanotechnology Construction Materials, Kassel University Press, Kassel, Germany, 2020, pp. 43-44.

35. Abellán-García, J., “An Overview of the Development and Applications of UHPFRC in Colombia,” Concrete Plant International Worldwide, CONRETE TECHNOLOGY, Cape Town, South Africa, 2020, pp. 48-52.

36. Abellán-García, J.; Nuñez-Lopez, A.; and Arango-Campo, S., “Pedestrian Bridge over Las Vegas Avenue in Medellín. First Latin American Infrastructure in UHPFRC,” P. Serna, A. Llano-Torre, J. R. Martí-Vargas, and J. Navarro-Gregori, eds., BEFIB 2020, RILEM Bookseries, Valencia, Spain, 2020, pp. 864-872. doi: 10.1007/978-3-030-58482-5_76

37. Dagenais, M. A.; Massicotte, B.; and Boucher-Proulx, G., “Seismic Retrofitting of Rectangular Bridge Piers with Deficient Lap Splices Using Ultrahigh-Performance Fiber-Reinforced Concrete,” Journal of Bridge Engineering, ASCE, V. 23, No. 2, 2018, pp. 1-13. doi: 10.1061/(ASCE)BE.1943-5592.0001173

38. Rai, B., and Wille, K., “Development and Testing of High / Ultra-High Early Stregnth Concrete,” B. Middendorf, E. Fehling, A. Wetzel, eds., Proceedings, 5th International Symposium Fracture Mechanics of Concrete Structures, University of Kassel, Kassel, Germany, 2020, pp. 7-8.

39. Pham, H. D.; Khuc, T.; Nguyen, T. V.; Cu, H. V.; Le, D. B.; and Trinh, T. P., “Investigation of Flexural Behavior of a Prestressed Girder for Bridges Using Nonproprietary UHPC,” Advances in Concrete Construction, V. 10, 2020, pp. 71-79. doi: 10.12989/acc.2020.10.1.071

40. Abellán-García, J., “Artificial Neural Network Model for Strength Prediction of Ultra-High-Performance Concrete,” ACI Materials Journal, V. 118, No. 4, July 2021, pp. 3-14. doi: 10.14359/51732710

41. Abellán-García, J., “Comparison of Artificial Intelligence and Multivariate Regression in Modeling The Flexural Behavior of UHPFRC,” Dyna (Bilbao), V. 87, 2020, pp. 239-248. doi: 10.15446/dyna.v87n214.86172

42. Abellán-García, J.; Torres, N.; Núñez, A.; and Fernández, J., “Influencia del Exponente de Fuller, La Relación Agua Conglomerante y el Contenido en Policarboxilato en Concretos de Muy Altas Prestaciones,” Fourth International Conference on Civil Engineering, Havana, Cuba, 2018.

43. Abellán-García, J.; Fernández, J.; Torres, N.; and Núñez, A., “Statistical Optimization of Ultra-High-Performance Glass Concrete,” ACI Materials Journal, V. 117, No. 1, Jan. 2020, pp. 243-254. doi: 10.14359/51720292

44. Richard, P., and Cheyrezy, M., “Composition of Reactive Powder Concretes,” Cement and Concrete Research, V. 25, No. 7, 1995, pp. 1501-1511. doi: 10.1016/0008-8846(95)00144-2

45. Ahmad, S., “Use of Alternative Waste Materials in Producing Ultra-High Performance Concrete,” MATEC Web of Conferences, V. 120, 2017, p. 03014. doi: 10.1051/matecconf/201712003014

46. The European Project Group, “The European Guidelines for Self-Compacting Concrete,” 2005.

47. Montgomery, D. C., and Speedy, A., Design and Analysis of Experiments, fourth edition, 2006.

48. Derringer, G., and Suich, R., “Simultaneous Optimization of Several Response Variables,” Journal of Quality Technology, V. 12, No. 4, 1980, pp. 214-219. doi: 10.1080/00224065.1980.11980968

49. Al-Azzawi, A.; Sultan, A.; and Risan, H. K., “Behavior of Ultra High Performance Concrete Structures,” Journal of Engineering and Applied Sciences (Asian Research Publishing Network), V. 6, 2011, pp. 95-109.

50. Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; and Durães, L., “Enhanced Durability of Ultra High Performance Concrete by Incorporating Supplementary Cementitious Materials,” Second International Conference on Microstructures of Durable Cementitious Composites, 2012, pp. 11-13.

51. Pedrajas, C.; Rahhal, V.; and Talero, R., “Determination of Characteristic Rheological Parameters in Portland Cement Pastes,” Construction and Building Materials, V. 51, 2014, pp. 484-491. doi: 10.1016/j.conbuildmat.2013.10.004

52. Li, W.; Huang, Z.; Zu, T.; Shi, C.; Duan, W. H.; and Shah, S. P., “Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 1, 2016, pp. 1-9. doi: 10.1061/(ASCE)MT.1943-5533.0001327

53. Guo, P.; Bao, Y.; and Meng, W., “Review of Using Glass in High-Performance Fiber-Reinforced Cementitious Composites,” Cement and Concrete Composites, V. 120, 2021, p. 104032. doi: 10.1016/j.cemconcomp.2021.104032

54. Park, S.; Wu, S.; Liu, Z.; and Pyo, S., “The Role of Supplementary Cementitious Materials (SCMS) in Ultra High Performance Concrete (UHPC): A Review,” Materials (Basel), V. 14, No. 6, 2021, pp. 1-24. doi: 10.3390/ma14061472

55. Soliman, N. A., and Tagnit-Hamou, A., “Using Glass Sand as an Alternative for Quartz Sand in UHPC,” Construction and Building Materials, V. 145, 2017, pp. 243-252. doi: 10.1016/j.conbuildmat.2017.03.187

56. de Larrard, F., “Concrete Mixture Proportioning: a Scientific Approach,” Modern Concrete Technology Series, E&FN Spon, London, UK, 1999.

57. de Larrard, F., and Sedran, T., “Mixture-Proportioning of High-Performance Concrete,” Cement and Concrete Research, V. 32, No. 11, 2002, pp. 1699-1704. doi: 10.1016/S0008-8846(02)00861-X

58. Li, Z., and Rangaraju, P. R., “Development of UHPC Using a Ternary Blend of Ultra-Fine Class F Fly Ash, Meta-Kaolin and Portland Cement,” First International Interactive Symposium UHPC, 2016, pp. 1-12. doi: 10.21838/uhpc.2016.64.10.21838/uhpc.2016.64

59. Malhotra, V. M.; Ramachandran, V. S.; Feldman, R. F.; and Aïtcin, P.-C., Condensed Silica Fume in Concrete, CRC Press, Boca Raton, FL, 2018.

60. Çakır, Ö., and Sofyanlı, Ö. Ö., “Influence of Silica Fume on Mechanical and Physical Properties of Recycled Aggregate Concrete,” HBRC Journal, V. 11, No. 2, 2015, pp. 157-166. doi: 10.1016/j.hbrcj.2014.06.002

61. Ragalwar, K. A.; Nguyen, H.; Ranade, R.; Heard, W. F.; and Williams, B. A., “Influence of Distribution Modulus of Particle-Size Distribution on Rheological and Mechanical Properties of Ultra-High-Strength SHCC Matrix,”Strain-Hardening Cement-Based Composites, pp. 221-229.

62. Hong, S.; Yoon, S.; Kim, J.; Lee, C.; Kim, S.; and Lee, Y., “Evaluation of Condition of Concrete Structures using Ultrasonic Pulse Velocity Method,” Applied Sciences (Basel, Switzerland), V. 10, No. 2, 2020, pp. 1-19. doi: 10.3390/app10020706

63. Abbas, S.; Nehdi, M. L.; and Saleem, M. A., “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges,” International Journal of Concrete Structures and Materials, V. 10, No. 3, 2016, pp. 271-295. doi: 10.1007/s40069-016-0157-4

64. Nassif, H.; Najm, H.; and Suksawang, N., “Effect of Pozzolanic Materials and Curing Methods on the Elastic Modulus of HPC,” Cement and Concrete Composites, V. 27, No. 6, 2005, pp. 661-670. doi: 10.1016/j.cemconcomp.2004.12.005

65. Sri Ravindrarajah, R., “Strength Evaluation of High-Strength Concrete by Ultrasonic Pulse Velocity Method,” Australian Institute for Non-Destructive Testing, National Conference, Melbourne, Australia, 1992.

66. Torres Castellanos, N., “Estudio en Estado Fresco y Endurecido de Concretos Adicionados Con Catalizados de Craqueo Catalítico Usado (FCC),” Universidad Nacional de Colombia, Bogota, Colombia, 2014.

67. Haber, Z. B.; la Varga, I. D.; Graybeal, B. A.; Nakashoji, B.; and El-Helou, R., “Properties and Behavior of UHPC-Class Materials,” Publication FHWA-HRT-18-036, Federal Highway Administration, Washington, DC, 2018.

68. Ashish, D. K., and Verma, S. K., “Robustness of Self-Compacting Concrete Containing Waste Foundry Sand and Metakaolin: A Sustainable Approach,” Journal of Hazardous Materials, V. 401, 2021, p. 123329 doi: 10.1016/j.jhazmat.2020.12332910.1016/j.jhazmat.2020.123329

69. Ashish, D. K., “Concrete Made with Waste Marble Powder and Supplementary Cementitious Material for Sustainable Development,” Journal of Cleaner Production, V. 211, 2019, pp. 716-729. doi: 10.1016/j.jclepro.2018.11.245

70. Mehta, A., and Ashish, D. K., “Silica Fume and Waste Glass in Cement Concrete Production: A Review,” Journal of Building Engineering, V. 29, 2020, p. 100888. doi: 10.1016/j.jobe.2019.100888

71. Ashish, D. K., and Verma, S. K., “Cementing Efficiency of Flash and Rotary-Calcined Metakaolin in Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 12, 2019, p. 04019307. doi: 10.1061/(ASCE)MT.1943-5533.0002953


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer