Title:
Aluminum Dross for Thermal Insulation and Acoustic Absorption of Alkali-Activated Slag Mortars
Author(s):
Alaa M. Rashad, Abd El Fattah A. Mahmoud, and W. M. Morsi
Publication:
Materials Journal
Volume:
119
Issue:
4
Appears on pages(s):
151-164
Keywords:
acoustic absorption; alkali activation; aluminum dross; lightweight mortar; thermal conductivity
DOI:
10.14359/51734731
Date:
7/1/2022
Abstract:
The present research is the first attempt to investigate the opportunity of incorporating Egyptian aluminum slag (aluminum dross [Al-dross]) up to 50% into alkali-activated slag (AAS) lightweight mortars for thermal insulation and acoustic absorption purposes. Because expanded perlite (EP) is a standout among the effective materials in insulating, it was used as a fine aggregate. To increase the efficiency of thermal insulation and acoustic absorption, different foaming/blowing agents (0.5 and 4%) of hydrogen peroxide (H2O2) were incorporated. The results of density, compressive strength, total porosity, water absorption, thermal conductivity, and acoustic absorption of different mixtures were measured and compared with those containing 100% slag prepared with either EP or natural silica sand as a fine aggregate without any foaming/blowing agent. The selected samples were examined by different tools such as X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that introducing 50% Al-dross, without any foaming agent, could decrease the thermal conductivity and density by 23.12% and 14.83%, respectively. Including a high dosage of foaming agent resulted in low thermal conductivities (0.091 to 0.107 W/mK), low densities (209.3 to 544 kg/m3), high acoustic absorption coefficient, and acceptable compressive strength (0.99 to 1.67 MPa). The new product can not only save energy but also reduce the problem of by-products in landfills.
Related References:
1. Ruellan, M.; Park, H.; and Bennacer, R., “Residential Building Energy Demand and Thermal Comfort: Thermal Dynamics of Electrical Appliances and their Impact,” Energy and Building, V. 130, 2016, pp. 46-54. doi: 10.1016/j.enbuild.2016.07.029
2. Gruber, J. K.; Prodanovic, M.; and Alonso, R., “Estimation and Analysis of Building Energy Demand and Supply Costs,” Energy Procedia, V. 83, 2015, pp. 216-225. doi: 10.1016/j.egypro.2015.12.176
3. Nejat, P.; Jomehzadeh, F.; Taheri, M. M.; Gohari, M.; and Majid, M. Z. A., “A Global Review of Energy Consumption, CO2 Emissions and Policy in the Residential Sector (with an Overview of the Top Ten CO2 Emitting Countries),” Renewable & Sustainable Energy Reviews, V. 43, 2015, pp. 843-862. doi: 10.1016/j.rser.2014.11.066
4. Rashad, A. M., “A Comprehensive Overview about the Influence of Different Admixtures and Additives on the Properties of Alkali-Activated Fly Ash,” Materials & Design, V. 53, 2014, pp. 1005-1025. doi: 10.1016/j.matdes.2013.07.074
5. Ige, O. E.; Olanrewaju, O. A.; Duffy, K. J.; and Obiora, C., “A Review of the Effectiveness of Life Cycle Assessment for Gauging Environmental Impacts from Cement Production,” Journal of Cleaner Production, V. 324, 2021, p. 129213. doi: 10.1016/j.jclepro.2021.129213
6. Carreño-Gallardo, C.; Tejeda-Ochoa, A.; Perez-Ordonez, O.; Ledezma-Sillas, J.; Lardizabal-Gutierrez, D.; Prieto-Gomez, C.; Valenzuela-Grado, J. A.; Robles-Hernandez, F. C.; and Herrera-Ramirez, J. M., “In the CO2 Emission Remediation by Means of Alternative Geopolymers as Substitutes for Cements,” Journal of Environmental Chemical Engineering, V. 6, No. 4, 2018, pp. 4878-4884. doi: 10.1016/j.jece.2018.07.033
7. Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; and Li, C., “Quantifying CO2 Emissions from China’s Cement Industry,” Renewable & Sustainable Energy Reviews, V. 50, 2015, pp. 1004-1012. doi: 10.1016/j.rser.2015.05.031
8. Koohestanian, E., and Shahraki, F., “Review on Principles, Recent Progress, and Future Challenges for Oxy-Fuel Combustion CO2 Capture Using Compression and Purification Unit,” Journal of Environmental Chemical Engineering, V. 9, No. 4, 2021, p. 105777. doi: 10.1016/j.jece.2021.105777
9. Rashad, A. M., “An Overview on Rheology, Mechanical Properties and Durability of High-Volume Slag Used as a Cement Replacement in Paste, Mortar and Concrete,” Construction and Building Materials, V. 187, 2018, pp. 89-117. doi: 10.1016/j.conbuildmat.2018.07.150
10. Rashad, A. M., “A Comprehensive Overview about the Influence of Different Additives on the Properties of Alkali-Activated Slag–A Guide for Civil Engineer,” Construction and Building Materials, V. 47, 2013, pp. 29-55. doi: 10.1016/j.conbuildmat.2013.04.011
11. Rashad, A. M., “Effect of Quartz-Powder on the Properties of Conventional Cementitious Materials and Geopolymers,” Materials Science and Technology, V. 34, No. 17, 2018, pp. 2043-2056. doi: 10.1080/02670836.2018.1471435
12. Rashad, A. M., “Effect of Nanoparticles on the Properties of Geopolymer Materials,” Magazine of Concrete Research, V. 71, No. 24, 2019, pp. 1283-1301. doi: 10.1680/jmacr.18.00289
13. Rashad, A. M., “The Effect of Polypropylene, Polyvinyl-Alcohol, Carbon and Glass Fibres on geopolymers Properties,” Materials Science and Technology, V. 35, No. 2, 2019, pp. 127-146. doi: 10.1080/02670836.2018.1514096
14. Reddy, M. S., and Neeraja, D., “Aluminum Residue Waste for Possible Utilisation as a Material: A Review,” Sadhana, V. 43, No. 8, 2018, p. 124. doi: 10.1007/s12046-018-0866-2
15. Adeosun, S. O.; Sekunowo, O. I.; Taiwo, O. O.; Ayoola, W. A.; and Machado, A., “Physical and Mechanical Properties of Aluminum Dross,” Advanced Materials, V. 3, No. 2, 2014, pp. 6-10. doi: 10.11648/j.am.20140302.11
16. Onutai, S.; Jiemsirilers, S.; Wada, S.; and Thavorniti, P., “Effect of Sodium Hydroxide Solution on the Properties of Geopolymer Based on Fly Ash and Aluminium Waste Blend,” Warasan Technology Suranaree, V. 21, No. 1, 2014.
17. Kolchakova, G.; Chomakov, I.; Koruderlieva, S.; and Ivanova, M., “Preparation and Characterisation of Porous Materials from Waste Glass and Alumina Slag,” Journal of the Balkan Tribological Association, V. 23, No. 1, 2017, pp. 177-183.
18. Pérez-Villarejo, L.; Bonet-Martínez, E.; Eliche-Quesada, D.; Sánchez-Soto, P. J.; Rincón-López, J. M.; and Castro-Galiano, E., “Biomass Fly Ash and Aluminium Industry Slags-Based Geopolymers,” Materials Letters, V. 229, 2018, pp. 6-12. doi: 10.1016/j.matlet.2018.06.100
19. Font, A.; Soriano, L.; Monzó, J.; Moraes, J.; Borrachero, M.; and Payá, J., “Salt Slag Recycled By-Products in High Insulation Alternative Environmentally Friendly Cellular Concrete Manufacturing,” Construction and Building Materials, V. 231, 2020, p. 117114. doi: 10.1016/j.conbuildmat.2019.117114
20. Gil, A., and Korili, S., “Management and Valorization of Aluminum Saline Slags: Current Status and Future Trends,” Chemical Engineering Journal, V. 289, 2016, pp. 74-84. doi: 10.1016/j.cej.2015.12.069
21. Pasupathy, K.; Ramakrishnan, S.; and Sanjayan, J., “Enhancing the Mechanical and Thermal Properties of Aerated Geopolymer Concrete Using Porous Lightweight Aggregates,” Construction and Building Materials, V. 264, 2020, p. 120713. doi: 10.1016/j.conbuildmat.2020.120713
22. Gao, H.; Liao, L.; Liu, H.; Mei, L.; Wang, Z.; Huang, D.; Lv, G.; Zhu, G.; and Wang, C., “Optimization of Thermal Insulation Performance of Porous Geopolymers under the Guidance of Thermal Conductivity Calculation,” Ceramics International, V. 46, No. 10, 2020, pp. 16537-16547. doi: 10.1016/j.ceramint.2020.03.221
23. Top, S.; Vapur, H.; Altiner, M.; Kaya, D.; and Ekicibil, A., “Properties of Fly Ash-Based Lightweight Geopolymer Concrete Prepared Using Pumice and Expanded Perlite as Aggregates,” Journal of Molecular Structure, V. 1202, 2020, p. 127236. doi: 10.1016/j.molstruc.2019.127236
24. Long, W.-J.; Tan, X.-W.; Xiao, B.-X.; Han, N.-X.; and Xing, F., “Effective Use of Ground Waste Expanded Perlite as Green Supplementary Cementitious Material in Eco-Friendly Alkali Activated Slag Composites,” Journal of Cleaner Production, V. 213, 2019, pp. 406-414. doi: 10.1016/j.jclepro.2018.12.118
25. Rashad, A. M.; Khalil, M. H.; and El-Nashar, M., “Insulation Efficiency of Alkali-Activated Lightweight Mortars Containing Different Ratios of Binder/Expanded Perlite Fine Aggregate,” Innovative Infrastructure Solutions, V. 6, No. 3, 2021, p. 156. doi: 10.1007/s41062-021-00524-x
26. Rashad, A. M., “Vermiculite as a Construction Material–A Short Guide for Civil Engineer,” Construction and Building Materials, V. 125, 2016, pp. 53-62. doi: 10.1016/j.conbuildmat.2016.08.019
27. Rashad, A. M., “Lightweight Expanded Clay Aggregate as a Building Material–An Overview,” Construction and Building Materials, V. 170, 2018, pp. 757-775. doi: 10.1016/j.conbuildmat.2018.03.009
28. Rashad, A. M., “A Short Manual on Natural Pumice as a Lightweight Aggregate,” Journal of Building Engineering, V. 25, 2019, p. 100802. doi: 10.1016/j.jobe.2019.100802
29. Carabba, L.; Moricone, R.; Scarponi, G. E.; Tugnoli, A.; and Bignozzi, M. C., “Alkali Activated Lightweight Mortars for Passive Fire Protection: A Preliminary Study,” Construction and Building Materials, V. 195, 2019, pp. 75-84. doi: 10.1016/j.conbuildmat.2018.11.005
30. Novais, R. M.; Buruberri, L.; Ascensão, G.; Seabra, M.; and Labrincha, J., “Porous Biomass Fly Ash-Based Geopolymers with Tailored Thermal Conductivity,” Journal of Cleaner Production, V. 119, 2016, pp. 99-107. doi: 10.1016/j.jclepro.2016.01.083
31. Gao, H.; Liu, H.; Liao, L.; Mei, L.; Shuai, P.; Xi, Z.; and Lv, G., “A Novel Inorganic Thermal Insulation Material Utilizing Perlite Tailings,” Energy and Building, V. 190, 2019, pp. 25-33. doi: 10.1016/j.enbuild.2019.02.031
32. Papa, E.; Medri, V.; Natali Murri, A.; Laghi, L.; De Aloysio, G.; Bandini, S.; and Landi, E., “Characterization of Alkali Bonded Expanded Perlite,” Construction and Building Materials, V. 191, 2018, pp. 1139-1147. doi: 10.1016/j.conbuildmat.2018.10.086
33. Morsy, M.; Rashad, A. M.; Shoukry, H.; and Mokhtar, M., “Potential Use of Limestone in Metakaolin-Based Geopolymer Activated with H3PO4 for Thermal Insulation,” Construction and Building Materials, V. 229, 2019, p. 117088. doi: 10.1016/j.conbuildmat.2019.117088
34. Zhang, Z.; Provis, J. L.; Reid, A.; and Wang, H., “Mechanical, Thermal Insulation, Thermal Resistance and Acoustic Absorption Properties of Geopolymer Foam Concrete,” Cement and Concrete Composites, V. 62, 2015, pp. 97-105. doi: 10.1016/j.cemconcomp.2015.03.013
35. Rashad, A. M., and Essa, G. M., “Effect of Ceramic Waste Powder on Alkali-Activated slag Pastes Cured in Hot Weather after Exposure to Elevated Temperature,” Cement and Concrete Composites, V. 111, 2020, p. 103617 doi: 10.1016/j.cemconcomp.2020.103617
36. Rashad, A. M., “A Synopsis about Perlite as Building Material–A Best Practice Guide for Civil Engineer,” Construction and Building Materials, V. 121, 2016, pp. 338-353. doi: 10.1016/j.conbuildmat.2016.06.001
37. Javali, S.; Chandrashekar, A.; Naganna, S. R.; Manu, D.; Hiremath, P.; Preethi, H.; and Kumar, N. V., “Eco-Concrete for Sustainability: Utilizing Aluminium Dross and Iron Slag as Partial Replacement Materials,” Clean Technologies and Environmental Policy, V. 19, No. 9, 2017, pp. 2291-2304. doi: 10.1007/s10098-017-1419-9
38. Pereira, D.; de Aguiar, B.; Castro, F.; Almeida, M.; and Labrincha, J., “Mechanical Behaviour of Portland Cement Mortars with Incorporation of Al-Containing Salt Slags,” Cement and Concrete Research, V. 30, No. 7, 2000, pp. 1131-1138. doi: 10.1016/S0008-8846(00)00272-6
39. Elinwa, A. U., and Mbadike, E., “The Use of Aluminum Waste for Concrete Production,” Journal of Asian Architecture and Building Engineering, V. 10, No. 1, 2011, pp. 217-220. doi: 10.3130/jaabe.10.217
40. Reddy, M. S., and Neeraja, D., “Mechanical and Durability Aspects of Concrete Incorporating Secondary Aluminium Slag,” Resource-Efficient Technologies, V. 2, No. 4, 2016, pp. 225-232. doi: 10.1016/j.reffit.2016.10.012
41. Singh, N., “Foamed Geopolymer Concrete,” Materials Today: Proceedings, V. 5, No. 7, 2018, pp. 15243-15252. doi: 10.1016/j.matpr.2018.05.002
42. Wang, Z.; Su, H.; Zhao, S.; and Zhao, N., “Influence of Phase Change Material on Mechanical and Thermal Properties of Clay Geopolymer Mortar,” Construction and Building Materials, V. 120, 2016, pp. 329-334. doi: 10.1016/j.conbuildmat.2016.05.091
43. Villaquirán-Caicedo, M. A.; de Gutiérrez, R. M.; Sulekar, S.; Davis, C.; and Nino, J. C., “Thermal Properties of Novel Binary Geopolymers Based on Metakaolin and Alternative Silica Sources,” Applied Clay Science, V. 118, 2015, pp. 276-282. doi: 10.1016/j.clay.2015.10.005
44. Šmilauer, V.; Hlaváček, P.; Škvára, F.; Šulc, R.; Kopecký, L.; and Němeček, J., “Micromechanical Multiscale Model for Alkali Activation of Fly Ash and Metakaolin,” Journal of Materials Science, V. 46, No. 20, 2011, pp. 6545-6555. doi: 10.1007/s10853-011-5601-x
45. Prud’homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Arrii-Clacens, S.; Clacens, J. M.; and Rossignol, S., “Silica Fume as Porogent Agent in Geo-Materials at Low Temperature,” Journal of the European Ceramic Society, V. 30, No. 7, 2010, pp. 1641-1648. doi: 10.1016/j.jeurceramsoc.2010.01.014
46. Medri, V.; Papa, E.; Mazzocchi, M.; Laghi, L.; Morganti, M.; Francisconi, J.; and Landi, E., “Production and Characterization of Lightweight Vermiculite/Geopolymer-Based Panels,” Materials & Design, V. 85, 2015, pp. 266-274. doi: 10.1016/j.matdes.2015.06.145
47. Rashad, A. M., “Insulating and Fire-Resistant Behaviour of Metakaolin and Fly Ash Geopolymer Mortars,” Proceedings of the Institution of Civil Engineers-Construction Materials, V. 172, No. 1, 2019, pp. 37-44. doi: 10.1680/jcoma.17.00016
48. Rickard, W. D., and Van Riessen, A., “Performance of Solid and Cellular Structured Fly Ash Geopolymers Exposed to a Simulated Fire,” Cement and Concrete Composites, V. 48, 2014, pp. 75-82. doi: 10.1016/j.cemconcomp.2013.09.002
49. Natali Murri, A.; Medri, V.; and Landi, E., “Production and Thermomechanical Characterization of Wool–Geopolymer Composites,” Journal of the American Ceramic Society, V. 100, No. 7, 2017, pp. 2822-2831. doi: 10.1111/jace.14853
50. Goure-Doubi, H.; Lecomte-Nana, G.; Nait-Abbou, F.; Nait-Ali, B.; Smith, A.; Coudert, V.; and Konan, L., “Understanding the Strengthening of a Lateritic ‘Geomimetic’ Material,” Construction and Building Materials, V. 55, 2014, pp. 333-340. doi: 10.1016/j.conbuildmat.2014.01.064
51. Hodhod, O.; Rashad, A.; Abdel-Razek, M.; and Ragab, A., “Coating Protection of Loaded RC Columns to Resist Elevated Temperature,” Fire Safety Journal, V. 44, No. 2, 2009, pp. 241-249. doi: 10.1016/j.firesaf.2008.06.010
52. Rashad, A. M.; Essa, G. M.; and Morsi, W., “Traditional Cementitious Materials for Thermal Insulation,” Arabian Journal for Science and Engineering, 2022, pp. 1-13. doi: 10.1007/s13369-022-06718-4
53. Rashad, A. M., “Possibility of Producing Thermal Insulation Materials from Cementitious Materials without Foaming Agent or Lightweight Aggregate,” Environmental Science and Pollution Research International, V. 29, No. 3, 2022, pp. 3784-3793. doi: 10.1007/s11356-021-15873-4
54. Muñoz, P.; Morales, M.; Mendívil, M.; Juárez, M.; and Muñoz, L., “Using of Waste Pomace from Winery Industry to Improve Thermal Insulation of Fired Clay Bricks. Eco-Friendly Way of Building Construction,” Construction and Building Materials, V. 71, 2014, pp. 181-187. doi: 10.1016/j.conbuildmat.2014.08.027
55. Huang, X.; Ranade, R.; Zhang, Q.; Ni, W.; and Li, V. C., “Mechanical and Thermal Properties of Green Lightweight Engineered Cementitious Composites,” Construction and Building Materials, V. 48, 2013, pp. 954-960. doi: 10.1016/j.conbuildmat.2013.07.104
56. Al-Jabri, K. S.; Hago, A.; Al-Nuaimi, A.; and Al-Saidy, A., “Concrete Blocks for Thermal Insulation in Hot Climate,” Cement and Concrete Research, V. 35, No. 8, 2005, pp. 1472-1479. doi: 10.1016/j.cemconres.2004.08.018
57. Shi, J.; Liu, B.; Liu, Y.; Wang, E.; He, Z.; Xu, H.; and Ren, X., “Preparation and Characterization of Lightweight Aggregate Foamed Geopolymer Concretes Aerated Using Hydrogen Peroxide,” Construction and Building Materials, V. 256, 2020, p. 119442. doi: 10.1016/j.conbuildmat.2020.119442
58. Yang, K.-H.; Lee, K.-H.; Song, J.-K.; and Gong, M.-H., “Properties and Sustainability of Alkali-Activated Slag Foamed Concrete,” Journal of Cleaner Production, V. 68, 2014, pp. 226-233. doi: 10.1016/j.jclepro.2013.12.068
59. Ul Haq, E.; Padmanabhan, S. K.; and Licciulli, A., “In-Situ Carbonation of Alkali Activated Fly Ash Geopolymer,” Construction and Building Materials, V. 66, 2014, pp. 781-786. doi: 10.1016/j.conbuildmat.2014.06.012
60. Liu, M. Y. J.; Alengaram, U. J.; Jumaat, M. Z.; and Mo, K. H., “Evaluation of Thermal Conductivity, Mechanical and Transport Properties of Lightweight Aggregate Foamed Geopolymer Concrete,” Energy and Building, V. 72, 2014, pp. 238-245. doi: 10.1016/j.enbuild.2013.12.029
61. Rickard, W. D.; Vickers, L.; and Van Riessen, A., “Performance of Fibre Reinforced, Low Density Metakaolin Geopolymers under Simulated Fire Conditions,” Applied Clay Science, V. 73, 2013, pp. 71-77. doi: 10.1016/j.clay.2012.10.006
62. Henon, J.; Alzina, A.; Absi, J.; Smith, D.; and Rossignol, S., “Analytical Estimation of Skeleton Thermal Conductivity of a Geopolymer Foam from Thermal Conductivity Measurements,” The European Physical Journal. Special Topics, V. 224, No. 9, 2015, pp. 1715-1723. doi: 10.1140/epjst/e2015-02493-8
63. Kamseu, E.; Nait-Ali, B.; Bignozzi, M.; Leonelli, C.; Rossignol, S.; and Smith, D. S., “Bulk Composition and Microstructure Dependence of Effective Thermal Conductivity of Porous Inorganic Polymer Cements,” Journal of the European Ceramic Society, V. 32, No. 8, 2012, pp. 1593-1603. doi: 10.1016/j.jeurceramsoc.2011.12.030
64. Samal, S.; Thanh, N. P.; Petríková, I.; and Marvalová, B., “Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature,” JOM, V. 67, No. 7, 2015, pp. 1478-1485. doi: 10.1007/s11837-015-1420-x
65. Hlaváček, P.; Šmilauer, V.; Škvára, F.; Kopecký, L.; and Šulc, R., “Inorganic Foams Made from Alkali-Activated Fly Ash: Mechanical, Chemical and Physical Properties,” Journal of the European Ceramic Society, V. 35, No. 2, 2015, pp. 703-709. doi: 10.1016/j.jeurceramsoc.2014.08.024
66. Abidi, S.; Nait-Ali, B.; Joliff, Y.; and Favotto, C., “Impact of Perlite, Vermiculite and Cement on the Thermal Conductivity of a Plaster Composite Material: Experimental and Numerical Approaches,” Composites. Part B, Engineering, V. 68, 2015, pp. 392-400. doi: 10.1016/j.compositesb.2014.07.030
67. Wang, L.; Liu, P.; Jing, Q.; Liu, Y.; Wang, W.; Zhang, Y.; and Li, Z., “Strength Properties and Thermal Conductivity of Concrete with the Addition of Expanded Perlite Filled with Aerogel,” Construction and Building Materials, V. 188, 2018, pp. 747-757. doi: 10.1016/j.conbuildmat.2018.08.054
68. Park, S. B.; Seo, D. S.; and Lee, J., “Studies on the Sound Absorption Characteristics of Porous Concrete Based on the Content of Recycled Aggregate and Target Void Ratio,” Cement and Concrete Research, V. 35, No. 9, 2005, pp. 1846-1854. doi: 10.1016/j.cemconres.2004.12.009
69. Attal, E.; de l’Epine, Y. B.; Dauchez, N.; and Dubus, B., “Experimental Investigation of the Effect of Moisture on the Acoustic Properties of Lightweight Substrates Used in Green Envelopes,” Applied Acoustics, V. 180, 2021, p. 108108. doi: 10.1016/j.apacoust.2021.108108
70. Liu, X.; Hu, C.; and Chu, L., “Microstructure, Compressive Strength and Sound Insulation Property of Fly Ash-Based Geopolymeric Foams with Silica Fume as Foaming Agent,” Materials (Basel), V. 13, No. 14, 2020, p. 3215. doi: 10.3390/ma13143215
71. Capasso, I., and Iucolano, F., 2020, “Production of Lightweight Gypsum Using a Vegetal Protein as Foaming Agent,” Materials and Structures, V. 53, No. 2, p. 35. doi: 10.1617/s11527-020-01469-w
72. Bao-guo, M.; Hong-bo, Z.; and Rong-zhen, D., “Development of a High Sound Absorption Material CEMCOM,” Journal of Wuhan University of Technology-Mater. Sci. Ed., V. 17, No. 4, 2002, pp. 5-8. doi: 10.1007/BF02838405
73. Hung, T.-C.; Huang, J.-S.; Wang, Y.-W.; and Lin, K.-Y., “Inorganic Polymeric Foam as a Sound Absorbing and Insulating Material,” Construction and Building Materials, V. 50, 2014, pp. 328-334. doi: 10.1016/j.conbuildmat.2013.09.042
74. Heikal, M., and Ibrahim, S. M., “Characteristics and Durability of Alkali Activated Slag-Microsilica Pastes Subjected to Sulphate and Chloride Ions Attack,” Ceramics-Silikáty, V. 59, No. 2, 2015, pp. 81-89.
75. Martinez-Lopez, R., and Escalante-Garcia, J. I., “Alkali Activated Composite Binders of Waste Silica Soda Lime Glass and Blast Furnace Slag: Strength as a Function of the Composition,” Construction and Building Materials, V. 119, 2016, pp. 119-129. doi: 10.1016/j.conbuildmat.2016.05.064
76. Duran, A.; Sirera, R.; Pérez-Nicolás, M.; Navarro-Blasco, I.; Fernández, J.; and Alvarez, J. I., “Study of the Early Hydration of Calcium Aluminates in the Presence of Different Metallic Salts,” Cement and Concrete Research, V. 81, 2016, pp. 1-15. doi: 10.1016/j.cemconres.2015.11.013
77. Shen, J.; Xu, Y.; Chen, J.; and Wang, Y., “Study on the Stabilization of a New Type of Waste Solidifying Agent for Soft Soil,” Materials (Basel), V. 12, No. 5, 2019, p. 826. doi: 10.3390/ma12050826
78. Shao, N.-N.; Zhang, Y.-B.; Liu, Z.; Wang, D.-M.; and Zhang, Z.-T., “Fabrication of Hollow Microspheres Filled Fly Ash Based Foam Geopolymers with Ultra-Low Thermal Conductivity and Relative High Strength,” Construction and Building Materials, V. 185, 2018, pp. 567-573. doi: 10.1016/j.conbuildmat.2018.07.077
79. Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; and Cheng, X., “Development of Porous Fly Ash-Based Geopolymer with Low Thermal Conductivity,” Materials & Design, V. 65, 2015, pp. 529-533. doi: 10.1016/j.matdes.2014.09.024