Title:
Petrographic Evaluation of Aggregates Affected by Tectonic Deformation in Development of Alkali-Silica Reaction
Author(s):
Adelson Prado, Yane Coutinho, Fernanda Ferreira, Gorki Mariano, and Arnaldo Carneiro
Publication:
Materials Journal
Volume:
119
Issue:
4
Appears on pages(s):
39-48
Keywords:
aggregate; alkali-aggregate reaction; alkali-silica reaction; fault zones; petrography
DOI:
10.14359/51734684
Date:
7/1/2022
Abstract:
The deterioration of concrete due to alkali-silica reaction (ASR) is a worldwide problem. Rocks close to shear and/or fault zones generally favor the occurrence of this reaction when used as aggregates in concrete. This study evaluated six coarse aggregates from quarries at different distances from shear and fault zones in the eastern part of the state of Pernambuco, Brazil, to verify the influence of tectonic deformation in the aggregate reactivity. Petrographic analyses and accelerated mortar bar tests were performed. The presence of microcrystalline quartz from dynamic recrystallization in samples collected closer to transcurrent shear zones provided higher reactivity. Therefore, a strong correlation between expansion/microcrystalline quartz content and distance from transcurrent shear zones was obtained. Thus, the geological mapping and characterization may provide an initial and fast indication of the reactive potential of aggregates, being a guidance for the choice of the extraction location or an initial indication of the
need to use mitigation measures.
Related References:
1. Piasta, W.; Góra, J.; and Turkiewicz, T., “Properties and Durability of Coarse Igneous Rock Aggregates and Concretes,” Construction and Building Materials, V. 126, 2016, pp. 119-129. doi: 10.1016/j.conbuildmat.2016.09.022
2. Saha, A. K.; Khan, M. N. N.; Sarker, P. K.; Shaikh, F. A.; and Pramanik, A., “The ASR Mechanism of Reactive Aggregates in Concrete and Its Mitigation by Fly Ash: A Critical Review,” Construction and Building Materials, V. 171, 2018, pp. 743-758. doi: 10.1016/j.conbuildmat.2018.03.183
3. Andrade, W. P., Concreto: Massa, Estrutural, Projetado e Compactado Com Rolo — Ensaios e Propriedades, Pini, São Paulo, Brazil, 1997.
4. Neville, A. M., Propriedades do Concreto, Pini, São Paulo, Brazil, 1997, 828 pp.
5. Sims, I., and Poole, A., Alkali-Aggregate Reaction in Concrete—A World Review, CRC Press, London, UK, 2017, 805 pp.
6. Broekmans, M., “Structural Properties of Quartz and Their Potential Role for ASR,” Materials Characterization, V. 53, No. 2-4, 2004, pp. 129-140. doi: 10.1016/j.matchar.2004.08.010
7. DNIT 090/2006 – ES, “Patologias do Concreto – Especificação de Serviço,” Diretoria de Planejamento e Pesquisa – IPR, Rio de Janeiro, Brazil, 2006, 10 pp.
8. Wigum, B. J.; Pedersen, L. T.; Grelk, B.; and Lindgard, J., “State-of-Art Report: Key Parameters Influencing the Alkali Aggregate Reaction,” SINTEF Building and Infrastructure, Report 2.1, 2006, http://www.sintef.no/upload/Byggforsk/Partner/Report%202.1%20-%20Final%20-%20A06018.pdf. (last accessed June 10, 2022)
9. Kihara, Y., and Scandiuzzi, L., “Reação Álcali-Agregado: Mecanismo, Diagnose e Casos Brasileiros,” Congresso Brasileiro de Cimento, Proceedings, São Paulo, Brazil, 1993, pp. 319-337.
10. Kihara, Y., “Reação Álcali-Agregado: Aspectos Mineralógicos,” Proceedings, 1o Simpósio Nacional de Agregados, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil, 1986, pp. 127-138.
12. García del Amo, D., and Calvo Pérez, B., “Diagnosis of the Alkali-Silica Reactivity Potential by Means of Digital Image Analysis of Aggregate Thin Sections,” Cement and Concrete Research, V. 31, No. 10, 2001, pp. 1449-1454. doi: 10.1016/S0008-8846(01)00586-5
13. Monteiro, J. P. M.; Shomglin, K.; Wenk, H. R.; and Hasparyk, N. P., “Effect of Aggregate Deformation on Alkali-Silica Reaction,” ACI Materials Journal, V. 98, No. 2, Mar.-Apr. 2001, pp. 179-183.
14. Wigum, B. J., “Examination of Microstructural Features of Norwegian Cataclastic Rocks Their Use for Predicting Alkali-Reactivity in Concrete,” Engineering Geology, V. 40, No. 3-4, 1995, pp. 195-214. doi: 10.1016/0013-7952(95)00044-5
15. Thomson, M. L., and Grattan-Bellew, P. E., “Anatomy of a Porphyroblastic Schist: Alkali-Silica Reactivity,” Engineering Geology, V. 35, No. 1-2, 1993, pp. 81-91. doi: 10.1016/0013-7952(93)90071-J
16. Gillott, J. E., “Alkali-Reactivity Problems with Emphasis on Canadian Aggregates,” Engineering Geology, V. 23, No. 1, 1986, pp. 29-43. doi: 10.1016/0013-7952(86)90015-3
17. Ponce, J. M., and Batic, O. R., “Different Manifestations of the Alkali-Silica Reaction in Concrete According to the Reaction Kinetics of the Reactive Aggregate,” Cement and Concrete Research, V. 36, No. 6, 2006, pp. 1148-1156. doi: 10.1016/j.cemconres.2005.12.022
18. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, 2006, 684 pp.
19. Andriolo, F. R., “Agregado Deletério - Possibilidade(s) Segura(s) de Uso,” Proceedings, II Simpósio Sobre Reação Álcali-Agregado em Estruturas de Concreto, IBRACON/CBGB, Rio de Janeiro, Brazil, 2006.
20. Wang, Y.; Yu, G.; Deng, M.; Tang, M.; and Lu, D., “The Use of Thermodynamic Analysis in Assessing Alkali Contribution by Alkaline Minerals in Concrete,” Cement and Concrete Composites, V. 30, No. 4, 2008, pp. 353-359. doi: 10.1016/j.cemconcomp.2007.03.003
21. Leemann, A., and Holzer, L., “Alkali-Aggregate Reaction – Identifying Reactive Silicates in Complex Aggregates by ESEM Observation of Dissolution Features,” Cement and Concrete Composites, V. 27, No. 7-8, 2005, pp. 796-801. doi: 10.1016/j.cemconcomp.2005.03.007
22. Castro, N.; Sorensen, B.; and Broekmans, M., “Quantitative Assessment of Alkali-Reactive Aggregate Mineral Content Through XRD Using Polished Sections as a Supplementary Tool to RILEM AAR-1,” Cement and Concrete Research, V. 42, No. 11, 2012, pp. 1428-1437. doi: 10.1016/j.cemconres.2012.08.004
23. Pérez Marfil, P.; Locati, F.; Marfil, S.; and Falcone, D., “Assessment of the Potential Alkali-Reactivity of Slow-Reacting Aggregates from the Province of Buenos Aires, Argentina,” Bulletin of Engineering Geology and the Environment, V. 80, No. 12, 2021, pp. 8935-8948. doi: 10.1007/s10064-019-01551-w
24. Gogte, B. S., “An Evaluation of Some Common Indian Rocks with Special Reference to Alkali-Aggregate Reactions,” Engineering Geology, V. 7, No. 2, 1973, pp. 135-153. doi: 10.1016/0013-7952(73)90042-2
25. Dolar-Mantuani, L. M. M., “Undulatory Extinction in Quartz used for Identification of Potentially Alkali-Reactive Rocks,” Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, R.E. Oberholster, ed., Cape Town, South Africa, Paper S252/36, 1981, 11 pp.
26. Mullick, A. K.; Wason, R. C.; Sinha, S. K.; and Rao, L. H., “Evaluation of Quartzite and Granite Aggregates Containing Strained Quartz,” Concrete Alkali-Aggregate Reactions: Proceedings of the 7th International Conference, Ottawa, ON, Canada, P. E. Grattan-Bellew, ed., 1986, Noyes Publications, Park Ridge, NJ, pp. 428-433.
27. Grattan-Bellew, P. E., “Is High Undulatory Extinction in Quartz Indicative of Alkali-Expansivity of Granitic Aggregates,” Concrete Alkali-Aggregate Reactions: Proceedings of the 7th International Conference, Ottawa, ON, Canada, P. E. Grattan-Bellew, ed., 1986, Noyes Publications, Park Ridge, NJ, pp. 434-439.
28. Grattan-Bellew, P. E., “Microcrystalline Quartz, Undulatory Extinction and the Alkali-Silica Reaction,” Proceedings of the 9th International Conference on Alkali-Aggregate Reaction in Concrete, A. B. Poole, ed., London, UK, 1992, pp. 383-394.
29. Hasparyk, N. P., “Investigação dos Mecanismos da Reação Álcali-Agregado: Efeito da Cinza de Casca de Arroz e da Sílica Ativa,” master’s dissertation, Universidade Federal de Goiás, Goiânia, Brazil, 1999, 257 pp.
30. Rodrigues, E. P.; Kihara, Y.; and Sbrighi, C. N., “A Reatividade Álcali-Agregado de Rochas ‘Granitóides’ e ‘Quartzíticas’: Proposta de Índice de Reatividade Potencial,” Proceedings, Simpósio Sobre Reatividade Álcali-Agregado em Estruturas de Concreto, CBGB/FURNAS, Goiânia, Goiás, Brazil, 1997, pp. 151-159.
31. Ramos, V.; Fernandes, I.; Silva, A. S.; Soares, D.; and Noronha, F., “Potential Reactivity of Granitic Rocks. Petrographic Characterization vs Accelerated Expansion Tests,” Revista IBRACON de Estruturas e Materiais, V. 9, No. 1, 2016, pp. 66-74. doi: 10.1590/S1983-41952016000100005
32. Graham, W., “Undulatory Extinction of Quartz in Some British Granites in Relation to Age and Potential Reactivity,” Quarterly Journal of Engineering Geology and Hydrogeology, V. 27, No. 1, 1994, pp. 69-74. doi: 10.1144/GSL.QJEGH.1994.027.P1.09
33. De Hills, S. M., and Corvalán, J., “Undulatory Extinction in Quartz Grain of Some Chilean Granitic Rocks of Different Ages,” Geological Society of America Bulletin, V. 75, No. 4, 1964, pp. 363-366. doi: 10.1130/0016-7606(1964)75[363:UEIQGO]2.0.CO;2
34. Andriolo, F. R., “AAR – Dams Affected in Brazil - Report on the Current Situation,” Proceedings, 11th International Conference on Alkali-Aggregate Reaction, Québec City, QC, Canada, 2000, pp. 1243-1252.
35. Magalhães, F. S., and Cella, P. R. C., “Estruturas dos Maciços Rochosos,” Geologia de Engenharia, first edition, A. M. dos Santos Oliveira and S. N. Alves de Brito, eds., Associação Brasileira de Geologia de Engenharia, São Paulo, Brazil, 1998, pp. 39-55.
36. Kerrick, D. M., and Hooton, R. D., “ASR of Concrete Aggregate Quarried From a Fault Zone: Results and Petrographic Interpretation of Accelerated Mortar Bar Tests,” Cement and Concrete Research, V. 22, No. 5, 1992, pp. 949-960. doi: 10.1016/0008-8846(92)90119-G
37. Shayan, A., “Alkali-Reactivity of Deformed Granitic Rocks: A Case Study,” Cement and Concrete Research, V. 23, No. 5, 1993, pp. 1229-1236. doi: 10.1016/0008-8846(93)90184-B
38. Fatt, N. T.; Raj, J. K.; and Ghani, A. B., “Potential Alkali-Reactivity of Granite Aggregates in the Bukit Lagong Area, Selangor, Peninsular Malaysia,” Sains Malaysiana, V. 42, No. 6, 2013, pp. 773-781.
39. Neves, S. P., and Mariano, G., “Assessing the Tectonic Significance of a Large-Scale Transcurrent Shear Zone System: the Pernambuco Lineament, Northeastern Brazil,” Journal of Structural Geology, V. 21, No. 10, 1999, pp. 1369-1383. doi: 10.1016/S0191-8141(99)00097-8
40. ASTM C295/C295M-18, “Standard Guide for Petrographic Examination of Aggregates for Concrete,” ASTM International, West Conshohocken, PA, 2018, 9 pp.
41. ABNT NBR 15577-3:2018, “Agregados – Reatividade Álcali-Agregado. Parte 3: Análise Petrográfica Para Verificação da Potencialidade Reativa de Agregados em Presença de Álcalis do Concreto,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2018, 10 pp.
42. ASTM C1260-14, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” ASTM International, West Conshohocken, 2014, 5 pp.
43. ABNT NBR 15577-4:2018, “Agregados – Reatividade Álcali-Agregado. Parte 4: Determinação da Expansão em Barras de Argamassa Pelo Método Acelerado,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2018, 11 pp.
44. Andrade, T.; Rego Silva, J. J.; Hasparyk, N. P.; and Silva, C. M., “Investigação do Potencial de Reatividade Para o Desenvolvimento de RAA Dos Agregados Miúdos e Graúdos Comercializado na Região Metropolitana do Recife,” Proceedings, II Simpósio Sobre Reação Álcali-Agregado em Estruturas de Concreto, IBRACON/CBGB, Rio de Janeiro, Brazil, 2006, pp. 1-16.
45. Stipp, M.; Stünitz, H.; Heilbronner, R.; and Schmid, S., “The Eastern Tonale Fault Zone: A ‘Natural Laboratory’ for Crystal Plastic Deformation of Quartz Over a Temperature Range from 250 to 700°C,” Journal of Structural Geology, V. 24, No. 12, 2002, pp. 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
46. Murlidhar, B. R.; Mohamad, E. T.; and Armaghani, D. J., “Potential Alkali Silica Reactivity of Various Rock Types in an Aggregate Granite Quarry,” Measurement, V. 81, 2016, pp. 221-231. doi: 10.1016/j.measurement.2015.12.022
47. Murlidhar, B. R.; Mohamad, E. T.; Alel, M. N. A. B.; and Armaghani, D. J., “Geological Study and Mining Plan Importance for Mitigating Alkali Silica Reaction in Aggregate Quarry Operation,” Sciences & Engineering, V. 78, 2016, pp. 71-79.
48. Ng, T. F., and Yeap, E. B., “Potential Alkali-Silica Reaction in Aggregate of Deformed Granite,” Bulletin of the Geological Society of Malaysia, V. 53, 2007, pp. 81-88. doi: 10.7186/bgsm53200713
49. Locati, F.; Marfil, S.; and Baldo, E., “Effect of Ductile Deformation of Quartz-Bearing Rocks on the Alkali-Silica Reaction,” Engineering Geology, V. 116, No. 1-2, 2010, pp. 117-128. doi: 10.1016/j.enggeo.2010.08.001
50. Gomes Neto, D. P.; Conceição, H.; Lisboa, V. A. C.; Santana, R. S.; and Barreto, L. S., “Influence of Granitic Aggregates from Northeast Brazil on the Alkali-Aggregate Reaction,” Materials Research, V. 17, 2014, pp. 51-58. doi: 10.1590/S1516-14392014005000045
51. Šachlová, Š., “Microstructure Parameters Affecting Alkali-Silica Reactivity of Aggregates,” Construction and Building Materials, V. 49, 2013, pp. 604-610. doi: 10.1016/j.conbuildmat.2013.08.087