Development and Research on Ultra-High-Performance Concrete Dosages in Colombia: A Review

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Development and Research on Ultra-High-Performance Concrete Dosages in Colombia: A Review

Author(s): Joaquín Abellán-García and Eliana García-Castaño

Publication: Materials Journal

Volume: 119

Issue: 3

Appears on pages(s): 209-221

Keywords: cost; mechanical properties; mineral admixtures; optimization; sustainability; ultra-high-performance concrete (UHPC)

DOI: 10.14359/51734617

Date: 5/1/2022

Abstract:
Nowadays, the application of ultra-high-performance concrete (UHPC) has had a significant proliferation worldwide. However, its high carbon footprint and costs, due to its high cement, silica fume, quartz dust, and fiber contents, can be mentioned among its main drawbacks. It is the purpose of this review paper to summarize and analyze the contributions of the research performed in Colombia in the last 2 years on the optimization of UHPC dosages to render its costs and carbon footprint a minimum. The results of this review demonstrated that it is possible to obtain an eco-friendly and low-cost UHPC cementitious matrix by using mineral admixtures available in the Colombian market. Furthermore, the referenced pieces of research also showed that they could achieve excellent ductility parameters by adding less than 2% of total volume fiber to the optimized UHPC matrix.

Related References:

1. Wille, K.; El-Tawil, S.; and Naaman, A. E., “Properties of Strain Hardening Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) under Direct Tensile Loading,” Cement and Concrete Composites, V. 48, Apr. 2014, pp. 53-66. doi: 10.1016/j.cemconcomp.2013.12.015

2. Abellán-García, J., “Dosage Optimization and Seismic Retrofitting Applications of Ultra-High-Performance Fiber Reinforced Concrete (UHPFRC),” PhD thesis, Polytechnic University of Madrid, Madrid, Spain, 2020.

3. Abellán, J.; Fernández, J.; Torres, N.; and Núñez, A., “Statistical Optimization of Ultra-High-Performance Glass Concrete,” ACI Materials Journal, V. 117, No. 1, Jan. 2020, pp. 243-254. doi: 10.14359/51720292

4. Soliman, N. A., and Tagnit-Hamou, A., “Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap,” Construction and Building Materials, V. 139, May 2017, pp. 374-383. doi: 10.1016/j.conbuildmat.2017.02.084

5. Martín-Sanz, H.; Chatzi, E.; and Brühwiler, E., “The Use of Ultra High Performance Fibre Reinforced Cement-Based Composites in Rehabilitation Projects: A Review,” 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS 9), V. Saouma, J. Bolander, and E. Landis, eds., Berkeley, CA, 2016, 12 pp.

6. Yudenfreund, M.; Odler, I.; and Brunauer, S., “Hardened Portland Cement Pastes of Low Porosity I. Materials and Experimental Methods,” Cement and Concrete Research, V. 2, No. 3, May 1972, pp. 313-330. doi: 10.1016/0008-8846(72)90073-7

7. Abellán, J.; Núñez, A.; and Samuel, A., “Pedestrian Bridge of UNAL in Manizales: A New UPHFRC Application in the Colombian Building Market,” Proceedings of Hipermat 2020 – 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials, B. Middendorf, E. Fehling, and A. Wetzel, eds., Kassel, Germany, 2020, pp. 43-44.

8. Abellán-García, J.; Núñez-López, A.; and Arango-Campo, S. E., “Pedestrian Bridge over Las Vegas Avenue in Medellín. First Latin American Infrastructure in UHPFRC,” Fibre Reinforced Concrete: Improvements and Innovations – RILEM-fib International Symposium on FRC (BEFIB) in 2020, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, and J. Navarro-Gregori, eds., Valencia, Spain, 2020, pp. 864-872.

9. Joe, C. D., and Moustafa, M. A., “Cost and Ecological Feasibility of Using UHPC in Bridge Piers,” First International Interactive Symposium on Ultra-High Performance Concrete – 2016, Des Moines, IA, 2016, 8 pp.

10. Massicotte, B.; Dagenais, M.-A.; and Lagier, F., “Performance of UHPFRC Jackets for the Seismic Strengthening of Bridge Piers,” RILEM-fib-AFGC International Symposium on Ultra-High Performance Fibre-Reinforced Concrete, F. Toutlemonde and J. Resplendino, eds., Marseille, France, 2013, pp. 89-98.

11. Schmidt, C., and Schmidt, M., “‘Whitetopping’ of Asphalt and Concrete Pavements with Thin Layers of Ultra-High-Performance Concrete - Construction and Economic Efficiency,” Proceedings of Hipermat 2012 – 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, and S. Piotrowski, eds., Kassel, Germany, 2012, pp. 921-927.

12. Suter, R.; Moreillon, L.; Clergue, C.; and Racordon, R., “Using UHPFRC for Complex Façade Elements,” Designing and Building with UHPFRC: State-of-the-Art and Development, F. Toutlemonde and J. Resplendino, eds., John Wiley & Sons, Inc., Hoboken, NJ, 2011, pp. 405-420.

13. Toutlemonde, F., and Resplendino, J., eds., Designing and Building with UHPFRC, John Wiley & Sons, Inc., Hoboken, NJ, 2013, 814 pp.

14. Wang, D.; Shi, C.; Wu, Z.; Xiao, J.; Huang, Z.; and Fang, Z., “A Review on Ultra High Performance Concrete: Part II. Hydration, Microstructure and Properties,” Construction and Building Materials, V. 96, Oct. 2015, pp. 368-377.

15. Association Française de Génie Civil and Service d’Etudes Techniques des Routes et Autoroutes, “Ultra High Performance Fibre-Reinforced Concretes – Recommendations,” AFGC-SETRA, 2013, 358 pp.

16. Yokota, H.; Rokugo, K.; and Sakata, N., “JSCE Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC),” 2008, 14 pp.

17. Abellán García, J.; Fernández-Gómez, J.; and Torres-Castellanos, N., “Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks,” European Journal of Environmental and Civil Engineering, 2020, 25 pp. doi: 10.1080/19648189.2020.1762749

18. Wu, Z.; Shi, C.; and He, W., “Comparative Study on Flexural Properties of Ultra-High Performance Concrete with Supplementary Cementitious Materials under Different Curing Regimes,” Construction and Building Materials, V. 136, Apr. 2017, pp. 307-313. doi: 10.1016/j.conbuildmat.2017.01.052

19. ACI Committee 239, “Ultra-High-Performance Concrete: An Emerging Technology Report (ACI 239R-18),” American Concrete Institute, Farmington Hills, MI, 2018, 21 pp.

20. Shi, C.; Wu, Z.; Xiao, J.; Wang, D.; Huang, Z.; and Fang, Z., “A Review on Ultra High Performance Concrete: Part I. Raw Materials and Mixture Design,” Construction and Building Materials, V. 101, Part 1, Dec. 2015, pp. 741-751. doi: 10.1016/j.conbuildmat.2015.10.088

21. Abellán, J.; Torres, N.; Núñez, A.; and Fernández, J., “Influencia del Exponente de Fuller, La Relación Agua Conglomerante y el Contenido en Policarboxilato en Las Propiedades de Concretos de Muy Altas Prestaciones,” Proceedings of the IV Congreso Internacional de Ingeniería Civil en Cuba, Havana, Cuba, 2018, 17 pp.

22. Soliman, N. A., and Tagnit-Hamou, A., “Using Particle Packing and Statistical Approach to Optimize Eco-Efficient Ultra-High-Performance Concrete,,” ACI Materials Journal, V. 114, No. 6, Nov.-Dec. 2017, pp. 847-858. doi: 10.14359/51701001

23. Ghafari, E.; Costa, H.; and Júlio, E., “RSM-Based Model to Predict the Performance of Self-Compacting UHPC Reinforced with Hybrid Steel Micro-Fibers,” Construction and Building Materials, V. 66, Sept. 2014, pp. 375-383. doi: 10.1016/j.conbuildmat.2014.05.064

24. Abellán-García, J., “Artificial Neural Network Model for Strength Prediction of Ultra-High-Performance Concrete,” ACI Materials Journal, V. 118, No. 4, July 2021, pp. 3-14.

25. de Larrard, F., and Sedran, T., “Mixture-Proportioning of High-Performance Concrete,” Cement and Concrete Research, V. 32, No. 11, Nov. 2002, pp. 1699-1704. doi: 10.1016/S0008-8846(02)00861-X

26. Funk, J. E., and Dinger, D. R., Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing, Springer, Boston, MA, 1994, 786 pp.

27. Abellán-García, J.; Guzmán-Guzmán, J. S.; Sánchez-Díaz, J. A.; and Rojas-Grillo, J., “Experimental Validation of Artificial Intelligence Model for the Energy Absorption Capacity of UHPFRC,” Dyna, V. 88, No. 217, Apr.-June 2021, pp. 150-159. doi: 10.15446/dyna.v88n217.86961

28. Graybeal, B. A., and Baby, F., “Development of Direct Tension Test Method for Ultra-High-Performance Fiber-Reinforced Concrete,” ACI Materials Journal, V. 110, No. 2, Mar.-Apr. 2013, pp. 177-186.

29. Meng, W., and Khayat, K. H., “Effect of Hybrid Fibers on Fresh Properties, Mechanical Properties, and Autogenous Shrinkage of Cost-Effective UHPC,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 4, Apr. 2018, p. 04018030. doi: 10.1061/(ASCE)MT.1943-5533.0002212

30. Pyo, S.; Wille, K.; El-Tawil, S.; and Naaman, A. E., “Strain Rate Dependent Properties of Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) under Tension,” Cement and Concrete Composites, V. 56, Feb. 2015, pp. 15-24. doi: 10.1016/j.cemconcomp.2014.10.002

31. Pyo, S.; El-Tawil, S.; and Naaman, A. E., “Direct Tensile Behavior of Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) at High Strain Rates,” Cement and Concrete Research, V. 88, Oct. 2016, pp. 144-156. doi: 10.1016/j.cemconres.2016.07.003

32. Abellán-García, J.; Fernández-Gómez, J. A.; Torres-Castellanos, N.; and Núñez-López, , A. M., “Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete,” ACI Materials Journal, V. 118, No. 1, Jan. 2021, pp. 127-138.

33. Dagenais, M.-A.; Massicotte, B.; and Boucher-Proulx, G., “Seismic Retrofitting of Rectangular Bridge Piers with Deficient Lap Splices Using Ultrahigh-Performance Fiber-Reinforced Concrete,” Journal of Bridge Engineering, ASCE, V. 23, No. 2, Feb. 2018, p. 04017129. doi: 10.1061/(ASCE)BE.1943-5592.0001173

34. Abellán-García, J., and Guzmán-Guzmán, J. S. “Random Forest-Based Optimization of UHPFRC under Ductility Requirements for Seismic Retrofitting Applications,” Construction and Building Materials, V. 285, May 2021, Article No. 122869.

35. Wille, K.; Kim, D. J.; and Naaman, A. E., “Strain-Hardening UHP-FRC with Low Fiber Contents,” Materials and Structures, V. 44, No. 3, Apr. 2011, pp. 583-598. doi: 10.1617/s11527-010-9650-4

36. Naaman, A. E., and Wille, K., “The Path to Ultra-High Performance Fiber Reinforced Concrete (UHP-FRC): Five Decades of Progress,” Proceedings of Hipermat 2012 – 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, and S. Piotrowski, eds., Kassel, Germany, Mar. 2012, pp. 3-16..

37. Bache, H. H., “Densified Cement Ultra-Fine Particle-Based Materials,” Proceedings of the Second International Conference on Superplasticizers in Concrete, Ottawa, ON, Canada, June 1981, pp. 1-35.

38. Birchall, J. D.; Howard, A. J.; and Kendall, K., “Flexural Strength and Porosity of Cements,” Nature, V. 289, No. 5796, Jan. 1981, pp. 388-390. doi: 10.1038/289388a0

39. Mishra, O., and Singh, S. P., “An Overview of Microstructural and Material Properties of Ultra-High-Performance Concrete,” Journal of Sustainable Cement-Based Materials, V. 8, No. 2, 2019, pp. 97-143. doi: 10.1080/21650373.2018.1564398

40. Lankard, D. R., “Slurry Infiltrated Fiber Concrete (SIFCON): Properties and Applications,” MRS Online Proceedings Library, V. 42, No. 1, Dec. 1984, pp. 277-286.

41. Abellán-García, J.; Núñez-López, A.; Torres-Castellanos, N.; and Fernández-Gómez, J., “Factorial Design of Reactive Concrete Powder Containing Electric Arc Slag Furnace and Recycled Glass Powder,” Dyna, V. 87, No. 213, Apr.-June 2020, pp. 42-51. doi: 10.15446/dyna.v87n213.82655

42. Richard, P., and Cheyrezy, M., “Composition of Reactive Powder Concretes,” Cement and Concrete Research, V. 25, No. 7, Oct. 1995, pp. 1501-1511. doi: 10.1016/0008-8846(95)00144-2

43. Song, J., and Liu, S. “Properties of Reactive Powder Concrete and Its Application in Highway Bridge,” Advances in Materials Science and Engineering, V. 2016, 2016, Article No. 5460241.

44. de Larrard, F., and Sedran, T, “Optimization of Ultra-High-Performance Concrete by the Use of a Packing Model,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 997-1009. doi: 10.1016/0008-8846(94)90022-1

45. Rossi, P.; Arca, A.; Parant, E.; and Fakhri, P., “Bending and Compressive Behaviours of a New Cement Composite,” Cement and Concrete Research, V. 35, No. 1, Jan. 2005, pp. 27-33. doi: 10.1016/j.cemconres.2004.05.043

46. Abellán, J.; Nuñez, A.; Torres, N.; and Fernández, J., “Development of Cost-Efficient UHPC with Local Materials in Colombia,” Proceedings of Hipermat 2020 - 5th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials, B. Middendorf, E. Fehling, and A. Wetzel, eds., Kassel, Germany, 2020, pp. 97-98.

47. Abellán-García, J., “K -fold Validation Neural Network Approach for Predicting the One-Day Compressive Strength of UHPC,” Advances in Civil Engineering Materials, V. 10, No. 1, 2021, pp. 223-243. doi: 10.1520/ACEM20200055

48. Abellán-García, J.; Núñez-López, A.; Torres-Castellanos, N.; and Fernández-Gómez, J., “Effect of FC3R on the Properties of Ultra-High-Performance Concrete with Recycled Glass,” Dyna, V. 86, No. 211, Oct.-Dec. 2019, pp. 84-93. doi: 10.15446/dyna.v86n211.79596

49. Tagnit-Hamou, A.; Soliman, N.; and Omran, A., “Green Ultra-High-Performance Glass Concrete,” First International Interactive Symposium on Ultra-High Performance Concrete – 2016, Des Moines, IA, July 2016, 10 pp.

50. Ghafari, E.; Costa, H.; and Júlio, E., “Critical Review on Eco-Efficient Ultra High Performance Concrete Enhanced with Nano-Materials,” Construction and Building Materials, V. 101, Part 1, Dec. 2015, pp. 201-208.

51. Abellán, J.; Torres, N.; Núñez, A.; and Fernández, J., “Ultra High Performance Fiber Reinforced Concrete: State of the Art, Applications and Possibilities into the Latin American Market,” Proceedings of the XXXVIII Jornadas Sudamericanas de Ingeniería Estructural, Lima, Peru, Oct. 2018.

52. Nguyen Amanjean, E., and Vidal, T. “Low Cost Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) with Flash Metakaolin,” Key Engineering Materials, V. 629-630, 2015, pp. 55-63.

53. Behnood, A., and Ziari, H., “Effects of Silica Fume Addition and Water to Cement Ratio on the Properties of High-Strength Concrete after Exposure to High Temperatures,” Cement and Concrete Composites, V. 30, No. 2, Feb. 2008, pp. 106-112. doi: 10.1016/j.cemconcomp.2007.06.003

54. Maroliya, M. K., “Tensile Behavior of Reactive Powder Concrete Containing Steel Fibres and Silica Fume,” International Journal of Engineering Research and Development, V. 4, No. 4, Oct. 2012, pp. 58-61.

55. Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; and Durães, L., “Optimization of UHPC by Adding Nanomaterials,” Proceedings of Hipermat 2012 – 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, and S. Piotrowski, eds., Kassel, Germany, 2012, pp. 71-78.

56. Abellán-García, J. “Four-Layer Perceptron Approach for Strength Prediction of UHPC,” Construction and Building Materials, V. 256, Sept. 2020, Article No. 119465.

57. Vaitkevičius, V.; Šerelis, E.; and Hilbig, H., “The Effect of Glass Powder on the Microstructure of Ultra High Performance Concrete,” Construction and Building Materials, V. 68, Oct. 2014, pp. 102-109. doi: 10.1016/j.conbuildmat.2014.05.101

58. Šerelis, E.; Vaitkevičius, V.; and Kerševičius, V., “Mechanical Properties and Microstructural Investigation of Ultra-High Performance Glass Powder Concrete,” Journal of Sustainable Architecture and Civil Engineering, V. 14, No. 1, 2016, pp. 5-11. doi: 10.5755/j01.sace.14.1.14478

59. Ahmad, S.; Hakeem, I.; and Maslehuddin, M., “Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand,” The Scientific World Journal, V. 2014, 2014, Article No. 713531. doi: 10.1080/19648189.2015.1090925

60. Van, V.-T.-A.; Rößler, C.; Bui, D.-D.; and Ludwig, H.-M., “Rice Husk Ash as Both Pozzolanic Admixture and Internal Curing Agent in Ultra-High Performance Concrete,” Cement and Concrete Composites, V. 53, Oct. 2014, pp. 270-278. doi: 10.1016/j.cemconcomp.2014.07.015

61. Van, V. T. A., and Ludwig, H.-M.; “Proportioning Optimization of UHPC Containing Rice Husk Ash and Ground Granulated Blast-furnace Slag.” Proceedings of Hipermat 2012 – 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, and S. Piotrowski, eds., Kassel, Germany, 2012, pp. 197-205.

62. Ferdosian, I.; Camões, A.; and Ribeiro, M., “High-Volume Fly Ash Paste for Developing Ultra-High Performance Concrete (UHPC),” Ciência e Tecnologia dos Materiais, V. 29, No. 1, Jan.-Apr. 2017, pp. e157-e161. doi: 10.1016/j.ctmat.2016.10.001

63. Tafraoui, A.; Escadeillas, G.; Lebaili, S.; and Vidal, T., “Metakaolin in the Formulation of UHPC,” Construction and Building Materials, V. 23, No. 2, Feb. 2009, pp. 669-674. doi: 10.1016/j.conbuildmat.2008.02.018

64. Camacho Torregrosa, E., “Dosage Optimization and Bolted Connections for UHPFRC Ties,” PhD thesis, Polytechnic University of Valencia, Valencia, Spain, 2013, 276 pp.

65. de Larrard, F., Concrete Mixture Proportioning: A Scientific Approach, Modern Concrete Technology Series, E & FN SPON, London, UK, 1999, 448 pp.

66. Rangaraju, P. R., and Li, Z., “Development of UHPC Using Ternary Blends of Ultra-Fine Class F Fly Ash, Meta-kaolin and Portland Cement,” First International Interactive Symposium on Ultra-High Performance Concrete – 2016, Des Moines, IA, 2016, 12 pp.

67. Ragalwar, K. A.; Nguyen, H.; Ranade, R.; Heard, W. F.; and Williams, B. A., “Influence of Distribution Modulus of Particle Size Distribution on Rheological and Mechanical Properties of Ultra-High-Strength SHCC Matrix,” Strain-Hardening Cement-Based Composites – SHCC4, V. Mechtcherine, V. Slowik, and P. Kabele, eds., 2018, pp. 221-229.

68. Al-Azzawi, A. A.; Ali, A. S.; and Risan, H. K., “Behavior of Ultra High Performance Concrete Structures,” ARPN Journal of Engineering and Applied Sciences, V. 6, No. 5, May 2011, pp. 95-109.

69. Payá, J.; Monzó, J. M.; Borrachero, M. V.; and Velázquez, S., “Pozzolanic Reaction Rate of Fluid Catalytic Cracking Catalyst Residue (FC3R) in Cement Pastes,” Advances in Cement Research, V. 25, No. 2, Apr. 2013, pp. 112-118. doi: 10.1680/adcr.11.00053

70. Puertas, F.; Santos, H.; Palacios, M.; and Martínez-Ramírez, S., “Polycarboxylate Superplasticiser Admixtures: Effect on Hydration, Microstructure and Rheological Behaviour in Cement Pastes,” Advances in Cement Research, V. 17, No. 2, Apr. 2005, pp. 77-89. doi: 10.1680/adcr.2005.17.2.77

71. Kubens, S., Interaction of Cement and Admixtures and Its Influence on Rheological Properties, Cuvillier Verlag, Göttingen, Germany, 2010, 192 pp.

72. Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; and Durães, L., “Enhanced Durability of Ultra High Performance Concrete by Incorporating Supplementary Cementitious Materials,” Second International Conference on Microstructural-related Durability of Cementitious Composites, G. Ye, K. Van Breugel, W. Sun, and C. Miao, eds., Amsterdam, the Netherlands, Apr. 2012, pp. 1422-1430.

73. Abellán-García, J.; Fernández-Gómez, J. A.; Torres-Castellanos, N.; and Núñez-López, A. M., “Machine Learning Prediction of Flexural Behavior of UHPFRC,” Fibre Reinforced Concrete: Improvements and Innovations – RILEM-fib International Symposium on FRC (BEFIB) in 2020, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, and J. Navarro-Gregori, eds., Valencia, Spain, 2020, pp. 570-583.

74. Kwon, S.; Nishiwaki, T.; Kikuta, T.; and Mihashi, H., “Development of Ultra-High-Performance Hybrid Fiber-Reinforced Cement-Based Composites,” ACI Materials Journal, V. 111, No. 3, May-June 2014, pp. 309-318. doi: 10.14359/51686890

75. Abellán-García, J., “Comparison of Artificial Intelligence and Multivariate Regression in Modeling the Flexural Behavior of UHPFRC,” Dyna, V. 87, No. 214, July-Sept. 2020, pp. 258-267.

76. Kim, D.-J.; Naaman, A. E.; and El-Tawil, S., “High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers,” International Journal of Concrete Structures and Materials, V. 3, No. 2, 2009, pp. 119-126. doi: 10.4334/IJCSM.2009.3.2.119

77. Ryu, G. S.; Kim, S. H.; Ahn, G. H.; and Koh, K. T., “Evaluation of the Direct Tensile Behavioral Characteristics of UHPC Using Twisted Steel Fibers,” Advanced Materials Research, V. 602-604, 2012, pp. 96-101. doi: 10.4028/www.scientific.net/AMR.602-604.96

78. Abellán-García, J.; Sánchez-Díaz, J. A.; and Ospina-Becerra, V. E., “Neural Network-Based Optimization of Fibers for Seismic Retrofitting Applications of UHPFRC,” European Journal of Environmental and Civil Engineering, June 2021.

79. Park, S. H.; Kim, D. J.; Ryu, G. S.; and Koh, K. T., “Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete,” Cement and Concrete Composites, V. 34, No. 2, Feb. 2012, pp. 172-184. doi: 10.1016/j.cemconcomp.2011.09.009

80. Yu, R.; Spiesz, P.; and Brouwers, H. J. H., “Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an Efficient Utilization of Binders and Fibres,” Construction and Building Materials, V. 79, Mar. 2015, pp. 273-282. doi: 10.1016/j.conbuildmat.2015.01.050

81. Kim, D. J.; Park, S. H.; Ryu, G. S.; and Koh, K. T., “Comparative Flexural Behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with Different Macro Fibers,” Construction and Building Materials, V. 25, No. 11, Nov. 2011, pp. 4144-4155. doi: 10.1016/j.conbuildmat.2011.04.051

82. Abellán-García, J., “An Overview of the Development and Applications of UHPFRC in Colombia,” Concrete Technology, Concrete Plant International Worldwide, 2020, pp. 48-52.

83. Núñez, A.; Patiño, J.; Arango, S.; and Echeverri, W., “Review on First Structural Applications of UHPC in Colombia,” Second International Interactive Symposium on Ultra-High Performance Concrete, Albany, NY, 2019, 10 pp.

84. Vacca, H.; Alvarado, Y.; Fuentes, J.; Ulloa, V.; León, M.; and Núñez, A., “Mechanical Properties of Ultra High Performance Concrete with Calcium Carbonate as a Substitute of Cementitious Material,” Second International Interactive Symposium on Ultra-High Performance Concrete, Albany, NY, 2019, 8 pp.

85. Abellán-García, J.; Santofimio-Vargas, M. A.; and Torres-Castellanos, N., “Analysis of Metakaolin as Partial Substitution of Ordinary Portland Cement in Reactive Powder Concrete,” Advances in Civil Engineering Materials, V. 9, No. 1, 2020, pp. 368-386. doi: 10.1520/ACEM20190224

86. Abellán-García, J.; Torres-Castellanos, N.; Fernández-Gómez, J.; and Núñez-López, A., “Ultra-High-Performance Concrete with Local High Unburned Carbon Fly Ash,” Dyna, V. 88, No. 216, 2021, pp. 38-47. doi: 10.15446/dyna.v88n216.89234

87. Valderrama, C. P.; Torres Agredo, J.; and de Gutierrez, R., “A High Unburned Carbon Fly Ash Concrete’s Performance Characteristics [Características de Desempeño de un Concreto Adicionado con Cenizas Volantesde Alto Nivel de Inquemados],” Ingeniería e Investigación, V. 31, No. 1, Apr. 2011, pp. 39-46.

88. Fonseca Barrera, L. A., “Empleo de Ceniza Volante Colombiana Como Material Cementicio Suplementario y Sus Efectos Sobre la Fijación de Cloruros en Concretos,” PhD thesis, National University of Colombia, Bogotá, Colombia, 2016, 319 pp. (in Spanish)

89. Montgomery, D. C., Design and Analysis of Experiments, fourth edition, John Wiley & Sons, Inc., Hoboken, NJ, 2006.

90. Härdle, W. K., and Simar, L., Applied Multivariate Statistical Analysis, Springer-Verlag GmbH, Berlin, Germany, 2012.

91. Gunst, R. F., “Response Surface Methodology: Process and Product Optimization Using Designed Experiments,” Technometrics, V. 38, No. 3, 1996, pp. 284-286. doi: 10.1080/00401706.1996.10484509

92. Derringer, G., and Suich, R., “Simultaneous Optimization of Several Response Variables,” Journal of Quality Technology, V. 12, No. 4, 1980, pp. 214-219. doi: 10.1080/00224065.1980.11980968

93. European Federation for Specialist Construction Chemicals and Concrete Systems, “The European Guidelines for Self-Compacting Concrete: Specification, Production and Use,” EFNARC, Norfolk, UK, May 2005, 68 pp.

94. Jaramillo Murcia, D. C., “Propiedades Mecánicas y de Durabilidad de Concretos de Ultra Altas Prestaciones (UHPC), con Diferentes Materiales Cementantes Suplementarios,” PhD thesis, Colombian School of Engineering Julio Garavito, Bogotá, Colombia, 2020, 116 pp. (in Spanish)

95. Neira Medina, A. L.; Abellán García, J., and Torres Castellanos, N., “Flexural Behavior of Environmentally Friendly Ultra-High-Performance Concrete with Locally Available Low-Cost Synthetic Fibers,” European Journal of Environmental and Civil Engineering, June 2021, 20 pp.

96. Neira Medina, A. L., “Efecto de la Mezcla de Micro-Fibras y Macro-Fibras Poliméricas en el Comportamiento a Flexión y Compresión del UHPFRC,” Master’s thesis, Colombian School of Engineering Julio Garavito, Bogotá, Colombia, 2020, 230 pp.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer