Quantifying Drying and Carbonation in Calcium Silicate- Cement Systems Using Neutron Radiography

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Quantifying Drying and Carbonation in Calcium Silicate- Cement Systems Using Neutron Radiography

Author(s): M. Khanzadeh Moradllo, R. M. Ghantous, S. Quinn, V. Aktan, S. Reese, and W. J. Weiss

Publication: Materials Journal

Volume: 119

Issue: 2

Appears on pages(s): 231-242

Keywords: calcium silicate cements; carbon dioxide (CO2) emission; carbonated binders; neutron radiography; sustainability

DOI: 10.14359/51734401

Date: 3/1/2022

Abstract:
Calcium silicate cements react with carbon dioxide (CO2) to form a concrete-like product. While several papers have focused on the properties of the solid material that forms, this study investigates the processing of carbonated calcium silicate systems. Specifically, this paper examines the drying of fresh calcium silicate cement/water systems and the subsequent carbonation process. A new methodology is presented, based on neutron radiography, to quantify the drying and extent of carbonation that has occurred (degree of carbonation) and the spatial distribution of carbonated products within the sample. Mortar mixtures with high-purity calcium silicate-based cement significantly extend the initial drying period, enabling greater penetration of CO2, allowing it to react with the calcium silicate at greater depths in the sample. While the carbonation reaction is rapid immediately after the CO2 is introduced into the system, the carbonation reaction slows over time. The findings indicate that the degree of saturation and the potential formation of reaction products may limit the penetration of CO2 through the sample depth.

Related References:

1. Grist, N., “Positioning Climate Change in Sustainable Development Discourse,” Journal of International Development, V. 20, No. 6, 2008, pp. 783-803. doi: 10.1002/jid.1496

2. International Energy Agency, “Tracking Industry 2020,” IEA, Paris, France, 2020, https://www.iea.org/reports/tracking-industry-2020. (last accessed Feb. 28, 2022)

3. Khanzadeh Moradllo, M., and Ley, M. T., “Comparing Ion Diffusion in Alternative Cementitious Materials in Real Time by Using Non-Destructive X-Ray Imaging,” Cement and Concrete Composites, V. 82, Sept, 2017, pp. 67-79. doi: 10.1016/j.cemconcomp.2017.05.014

4. Ashraf, W., and Olek, J., “Elucidating the Accelerated Carbonation Products of Calcium Silicates Using Multi-Technique Approach,” Journal of CO2 Utilization, V. 23, Jan. 2018, pp. 61-74.

5. Nielsen, P.; Boone, M. A.; Horckmans, L.; Snellings, R.; and Quaghebeur, M., “Accelerated Carbonation of Steel Slag Monoliths at Low CO2 Pressure—Microstructure and Strength Development,” Journal of CO2 Utilization, V. 36, Feb. 2020, pp. 124-134.

6. Villani, C.; Farnam, Y.; Washington, T.; Jain, J.; and Weiss, W. J., “Conventional Portland Cement and Carbonated Calcium Silicate–Based Cement Systems: Performance During Freezing and Thawing in Presence of Calcium Chloride Deicing Salts,” Transportation Research Record: Journal of the Transportation Research Board, V. 2508, No. 1, 2015, pp. 48-54. doi: 10.3141/2508-06

7. Jain, J.; Atakan, V.; DeCristofaro, N.; Jeong, H.; and Olek, J., “Performance of Calcium Silicate-Based Carbonated Concretes vs. Hydrated Concretes under Freeze-Thaw Environments (White Paper),” The Masterbuilder, July 2015, pp. 66-68.

8. Mahoutian, M.; Ghouleh, Z.; and Shao, Y., “Synthesis of Waste-Based Carbonation Cement,” Materials and Structures, V. 49, No. 11, 2016, pp. 4679-4690. doi: 10.1617/s11527-016-0816-6

9. Wei, Z.; Wang, B.; Falzone, G.; La Plante, E. C.; Okoronkwo, M. U.; She,  Z.; Oey, T.; Balonis, M.; Neithalath, N.; Pilon, L.; and Sant, G., “Clinkering-Free Cementation by Fly Ash Carbonation,” Journal of CO2 Utilization, V. 23, Jan. 2018, pp. 117-127.

10. Zhang, D.; Ghouleh, Z.; and Shao, Y., “Review on Carbonation Curing of Cement-Based Materials,” Journal of CO2 Utilization, V. 21, Oct. 2017, pp. 119-131.

11. Nielsen, P.; Baciocchi, R.; Costa, G.; Quaghebeur, M.; and Snellings, R., “Carbonate-Bonded Construction Materials from Alkaline Residues,” RILEM Technical Letters, V. 2, Dec. 2017, pp. 53-58. doi: 10.21809/rilemtechlett.2017.50

12. Ashraf, W., and Olek, J., “Carbonation Activated Binders from Pure Calcium Silicates: Reaction Kinetics and Performance Controlling Factors,” Cement and Concrete Composites, V. 93, Oct. 2018, pp. 85-98. doi: 10.1016/j.cemconcomp.2018.07.004

13. Meyer, V.; Sahu, S.; and Dunster, A., “Properties of Solidia Cement and Concrete,” Proceedings, First International Conference on Innovation in Low-Carbon Cement and Concrete Technology, London, UK, 2019, pp. 1-4.

14. Das, S.; Souliman, B.; Stone, D.; and Neithalath, N., “Synthesis and Properties of a Novel Structural Binder Utilizing the Chemistry of Iron Carbonation,” ACS Applied Materials & Interfaces, V. 6, No. 11, 2014, pp. 8295-8304. doi: 10.1021/am5011145

15. Ashraf, W., and Olek, J., “Carbonation Behavior of Hydraulic and Non-Hydraulic Calcium Silicates: Potential of Utilizing Low-Lime Calcium Silicates in Cement-Based Materials,” Journal of Materials Science, V. 51, No. 13, 2016, pp. 6173-6191. doi: 10.1007/s10853-016-9909-4

16. Ashraf, W.; Olek, J.; and Jain, J., “Microscopic Features of Non-Hydraulic Calcium Silicate Cement Paste and Mortar,” Cement and Concrete Research, V. 100, Oct. 2017, pp. 361-372. doi: 10.1016/j.cemconres.2017.07.001

17. Mehdipour, I.; Falzone, G.; La Plante, E. C.; Simonetti, D.; Neithalath, N.; and Sant, G., “How Microstructure and Pore Moisture Affect Strength Gain in Portlandite-Enriched Composites That Mineralize CO2,” ACS Sustainable Chemistry & Engineering, V. 7, No. 15, 2019, pp. 13053-13061. doi: 10.1021/acssuschemeng.9b02163

18. Villani, C.; Spragg, R.; Tokpatayeva, R.; Olek, J.; and Weiss, W. J., “Characterizing the Pore Structure of Carbonated Natural Wollastonite,” Proceedings, Fourth International Conference on the Durability of Concrete Structures, Purdue University, West Lafayette, IN, 2014, 8 pp.

19. Ashraf, W.; Olek, J.; and Tian, N., “Multiscale Characterization of Carbonated Wollastonite Paste and Application of Homogenization Schemes to Predict Its Effective Elastic Modulus,” Cement and Concrete Composites, V. 72, Sept. 2016, pp. 284-298. doi: 10.1016/j.cemconcomp.2016.05.023

20. Das, D.; Kizilkanat, A. B.; Chowdhury, S.; Stone, D.; and Neithalath, N., “Temperature-Induced Phase and Microstructural Transformations in a Synthesized Iron Carbonate (Siderite) Complex,” Materials & Design, V. 92, Feb. 2016, pp. 189-199. doi: 10.1016/j.matdes.2015.12.010

21. Farnam, Y.; Villani, C.; Washington, T.; Spence, M.; Jain, J.; and Weiss, W. J., “Performance of Carbonated Calcium Silicate Based Cement Pastes and Mortars Exposed to NaCl and MgCl2 Deicing Salt,” Construction and Building Materials, V. 111, May 2016, pp. 63-71. doi: 10.1016/j.conbuildmat.2016.02.098

22. Hussey, D. S.; Spernjak, D.; Weber, A. Z.; Mukundan, R.; Fairweather, J.; Brosha, E. L.; Davey, J.; Spendelow, J. S.; Jacobson, D. L.; and Borup, R. L., “Accurate Measurement of the Through-Plane Water Content of Proton-Exchange Membranes Using Neutron Radiography,” Journal of Applied Physics, V. 112, No. 10, 2012, p. 104906. doi: 10.1063/1.4767118

23. Sears, V. F., “Neutron Scattering Lengths and Cross Sections,” Neutron News, V. 3, No. 3, 1992, pp. 26-37. doi: 10.1080/10448639208218770

24. Khanzadeh Moradllo, M.; Montanari, L.; Suraneni, P.; Reese, S.; and Weiss, W. J., “Examining Curing Efficiency using Neutron Radiography,” Transportation Research Record: Journal of the Transportation Research Board, V. 2672, No. 27, 2018, pp. 13-23. doi: 10.1177/0361198118773571

25. Khanzadeh Moradllo, M.; Qiao, C.; Hall, H.; Ley, M. T.; Reese, S. R.; and Weiss, W. J., “Quantifying Fluid Filling of the Air Voids in Air Entrained Concrete Using Neutron Radiography,” Cement and Concrete Composites, V. 104, Nov. 2019, Article No. 103407. doi: 10.1016/j.cemconcomp.2019.103407

26. Khanzadeh Moradllo, M.; Qiao, C.; Isgor, B.; Reese, S.; and Weiss, W. J., “Relating Formation Factor of Concrete to Water Absorption,” ACI Materials Journal, V. 115, No. 6, Nov. 2018, pp. 887-898.

27. Khanzadeh Moradllo, M.; Reese, S. R.; and Weiss, W. J., “Using Neutron Radiography to Quantify the Settlement of Fresh Concrete,” Advances in Civil Engineering Materials, V. 8, No. 1, 2019, pp. 71-87.

28. Lucero, C. L.; Spragg, R. P.; Bentz, D. P.; Hussey, D. S.; Jacobson, D. L.; and Weiss, W. J., “Neutron Radiography Measurement of Salt Solution Absorption in Mortar,” ACI Materials Journal, V. 114, No. 1, Jan.-Feb. 2017, pp. 149-159. doi: 10.14359/51689488

29. Kanematsu, M.; Maruyama, I.; Noguchi, T.; Iikura, H.; and Tsuchiya, N., “Quantification of Water Penetration into Concrete through Cracks by Neutron Radiography,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, V. 605, No. 1-2, 2009, pp. 154-158. doi: 10.1016/j.nima.2009.01.206

30. Khanzadeh Moradllo, M.; Qiao, C.; Keys, M.; Hall, H.; Ley, M. T.; Reese, S.; and Weiss, W. J., “Quantifying Fluid Absorption in Air-Entrained Concrete Using Neutron Radiography,” ACI Materials Journal, V. 116, No. 6, Nov. 2019, pp. 213-226.

31. Schneider, C. A.; Rasband, W. S.; and Eliceiri, K. W., “NIH Image to ImageJ: 25 Years of Image Analysis,” Nature Methods, V. 9, No. 7, 2012, pp. 671-675. doi: 10.1038/nmeth.2089

32. Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; and Warren, J. M., “Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, V. 708, Apr. 2013, pp. 24-31. doi: 10.1016/j.nima.2012.12.112

33. Powers, T. C., The Properties of Fresh Concrete, first edition, John Wiley & Sons, Inc., New York, 1968.

34. Quinn, S., and Sahu, S., “Compositions and Methods for Controling Setting of Carbonatable Calcium Silicate Cements Containing Hydrating Materials (U.S. Patent 10,196,311),” Solidia Technologies, Inc., Piscataway, NJ, 2019.

35. Brinker, C. J., and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 2013.

36. Lura, P.; Pease, B.; Mazzotta, G. B.; Rajabipour, F.; and Weiss, W. J., “Influence of Shrinkage-Reducing Admixtures on Development of Plastic Shrinkage Cracks,” ACI Materials Journal, V. 104, No. 2, Mar.-Apr. 2007, pp. 187-194.

37. Levy, S. M., Construction Calculations Manual, Butterworth-Heinemann, Oxford, UK, 2011.

38. Crank, J., The Mathematics of Diffusion, Oxford University Press, Oxford, UK, 1979.

39. Shih, S.-M.; Ho, C.-S.; Song, Y.-S.; and Lin, J.-P., “Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature,” Industrial & Engineering Chemistry Research, V. 38, No. 4, 1999, pp. 1316-1322. doi: 10.1021/ie980508z


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer