Title:
Computational Investigation of Concrete Pipe Flow: Critical Review
Author(s):
Tooran Tavangar, Masoud Hosseinpoor, Ammar Yahia, and Kamal H. Khayat
Publication:
Materials Journal
Volume:
118
Issue:
6
Appears on pages(s):
203-215
Keywords:
discrete element method (DEM); lubrication layer; pumpability; Reynolds dilatancy; rheology; shear-induced particle migration (SIPM); smoothed-particle hydrodynamics (SPH)
DOI:
10.14359/51733124
Date:
11/1/2021
Abstract:
The prediction of concrete pumpability is of particular interest to properly design pumping circuits and select suitable pumps for successful processing of concrete. A critical review of empirical, analytical, and numerical models is carried out to predict concrete pumpability as a function of pipeline geometry, rheological properties of the bulk concrete, and the characteristics of the lubrication layer. The main mechanisms leading to the formation of the lubrication layer, including the wall effect, Reynolds dilatancy,
and shear-induced particle migration (SIPM), are discussed. The main phenomenological models governing SIPM are formulated in terms of spatial variations of particles’ interaction frequency and viscosity. In addition to the single-phase methodology, new computational approaches on SIPM in pipe flow of solid-liquid suspensions are discussed. The coupled computational fluid dynamics-discrete element method (CFD-DEM) and smoothed-particle hydrodynamics (SPH) methods are recommended as the most precise and realistic approaches to simulate concrete pipe flow
compared to the DEM and single-phase modelings.
Related References:
1. Kaplan, D.; de Larrard, F.; and Sedran, T., “Design of Concrete Pumping Circuit,” ACI Materials Journal, V. 102, No. 2, Mar.-Apr. 2005, pp. 110-117.
2. Feys, D.; Khayat, K. H.; Perez-Schell, A.; and Khatib, R., “Development of a Tribometer to Characterize Lubrication Layer Properties of Self-Consolidating Concrete,” Cement and Concrete Composites, V. 54, 2014, pp. 40-52. doi: 10.1016/j.cemconcomp.2014.05.008
3. Feys, D., and Khayat, K. H., “Particle Migration during Concrete Rheometry: How Bad Is It?” Materials and Structures, V. 50, No. 2, 2017, Article No. 122. doi: 10.1617/s11527-016-0992-4
4. Feys, D., “How Much is Bulk Concrete Sheared during Pumping?” Construction and Building Materials, V. 223, 2019, pp. 341-351. doi: 10.1016/j.conbuildmat.2019.06.224
5. Kwon, S. H.; Jang, K. P.; Kim, J. H.; and Shah, S. P., “State of the Art on Prediction of Concrete Pumping,” International Journal of Concrete Structures and Materials, V. 10, No. 3 Supplement, 2016, pp. S75-S85.
6. Choi, M.; Ferraris, C. F.; Martys, N. S.; Lootens, D.; Bui, V. K.; and Hamilton, H. R. T., “Metrology Needs for Predicting Concrete Pumpability,” Advances in Materials Science and Engineering, V. 2015, 10 pp. doi: 10.1155/2015/456238
7. Browne, R. D., and Bamforth, P. B., “Tests to Establish Concrete Pumpability,” ACI Journal Proceedings, V. 74, No. 5, May 1977, pp. 193-203.
8. Secrieru, E.; Mohamed, W.; Fataei, S.; and Mechtcherine, V., “Assessment and Prediction of Concrete Flow and Pumping Pressure in Pipeline,” Cement and Concrete Composites, V. 107, 2020, p. 103495. doi: 10.1016/j.cemconcomp.2019.103495
9. Feys, D.; De Schutter, G.; and Verhoeven, R., “Parameters Influencing Pressure during Pumping of Self-Compacting Concrete,” Materials and Structures, V. 46, No. 4, 2013, pp. 533-555. doi: 10.1617/s11527-012-9912-4
10. Buckingham, E., “On Plastic Flow Through Capillary Tubes,” Proceedings-ASTM International, V. 21, 1921, pp. 1154-1161.
11. Kaplan, D.; De Larrard, F.; Sedran, T.; Vachon, M.; and Machese, G., “Forecasting Pumping Parameters,” Proceedings of the 2nd International RILEM Symposium on Self-Compacting Concrete, Tokyo, Japan, 2001, pp. 556-564.
12. De Schutter, G., and Feys, D., “Pumping of Fresh Concrete: Insights And Challenges,” RILEM Technical Letters, V. 1, 2016, pp. 76-80. doi: 10.21809/rilemtechlett.2016.15
13. Kwon, S. H.; Park, C. K.; Jeong, J. H.; Jo, S. D.; and Lee, S. H., “Prediction of Concrete Pumping: Part II—Analytical Prediction and Experimental Verification,” ACI Materials Journal, V. 110, No. 6, Nov.-Dec. 2013, pp. 657-668.
14. Beaupré, D.; Chapdelaine, F.; Domone, P.; Koehler, E.; Shen, L.; Sonebi, M.; Struble, L.; Tepke, D.; Wallevik, O.; and Wallevik, J. E., “Comparison of Concrete Rheometers: International Tests at MB (Cleveland, OH, USA) in May 2003,” National Institute of Standards and Technology Interagency Report, NISTIR 7145, C. F. Ferraris and L. E. Brower, eds., 2003, 116 pp.
15. Choi, M. S.; Kim, Y. J.; and Kwon, S. H., “Prediction on Pipe Flow of Pumped Concrete Based on Shear-Induced Particle Migration,” Cement and Concrete Research, V. 52, 2013, pp. 216-224. doi: 10.1016/j.cemconres.2013.07.004
16. Jang, K. P.; Kim, W. J.; Choi, M. S.; and Kwon, S. H., “A New Method to Estimate Rheological Properties of Lubricating Layer for Prediction of Concrete Pumping,” Advanced Concrete Construction, V. 6, No. 5, 2018, pp. 465-483.
17. Chen, L.; Liu, G.; Cheng, W.; and Pan, G., “Pipe Flow of Pumping Wet Shotcrete Based on Lubrication Layer,” SpringerPlus, V. 5, 2016, Article No. 945.
18. Jacobsen, S.; Haugan, L.; Hammer, T. A.; and Kalogiannidis, E., “Flow Conditions of Fresh Mortar and Concrete in Different Pipes,” Cement and Concrete Research, V. 39, No. 11, 2009, pp. 997-1006. doi: 10.1016/j.cemconres.2009.07.005
19. Le, H. D.; Kadri, E. H.; Aggoun, S.; Vierendeels, J.; Troch, P. A.; and De Schutter, G., “Effect of Lubrication Layer on Velocity Profile of Concrete in a Pumping Pipe,” Materials and Structures, V. 48, No. 12, 2015, pp. 3991-4003. doi: 10.1617/s11527-014-0458-5
20. Secrieru, E.; Fataei, S.; Schröfl, C.; and Mechtcherine, V., “Study on Concrete Pumpability Combining Different Laboratory Tools and Linkage to Rheology,” Construction and Building Materials, V. 144, 2017, pp. 451-461. doi: 10.1016/j.conbuildmat.2017.03.199
21. Ngo, T. T.; Kadri, E. H.; Bennacer, R.; and Cussigh, F., “Use of Tribometer to Estimate Interface Friction and Concrete Boundary Layer Composition during the Fluid Concrete Pumping,” Construction and Building Materials, V. 24, No. 7, 2010, pp. 1253-1261. doi: 10.1016/j.conbuildmat.2009.12.010
22. Secrieru, E., “Pumping Behaviour of Modern Concretes—Characterisation and Prediction,” PhD dissertation, Technische Universität Dresden, Dresden, Germany, 2018, 170 pp.
23. Salinas, A., and Feys, D., “Estimation of Lubrication Layer Thickness and Composition through Reverse Engineering of Interface Rheometry Tests,” Materials (Basel), V. 13, No. 8, 2020, p. 1799. doi: 10.3390/ma13081799
24. Mechtcherine, V.; Nerella, V. N.; and Kasten, K., “Testing Pumpability of Concrete Using Sliding Pipe Rheometer,” Construction and Building Materials, V. 53, 2014, pp. 312-323. doi: 10.1016/j.conbuildmat.2013.11.037
25. Kwon, S. H.; Park, C. K.; Jeong, J. H.; Jo, S. D.; and Lee, S. H., “Prediction of Concrete Pumping: Part I—Development of New Tribometer for Analysis of Lubricating Layer,” ACI Materials Journal, V. 110, No. 6, Nov.-Dec. 2013, pp. 647-656.
26. Feys, D.; Khayat, K. H.; Perez-Schell, A.; and Khatib, R., “Prediction of Pumping Pressure by Means of New Tribometer for Highly-Workable Concrete,” Cement and Concrete Composites, V. 57, 2015, pp. 102-115. doi: 10.1016/j.cemconcomp.2014.12.007
27. Vand, V., “Viscosity of Solutions and Suspensions. I. Theory,” Journal of Physical and Colloid Chemistry, V. 52, No. 2, 1948, pp. 277-299. doi: 10.1021/j150458a001
28. Reynolds, O., “LVII. On the Dilatancy of Media Composed of Rigid Particles in Contact. With Experimental Illustrations,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, V. 20, No. 127, 1885, pp. 469-481. doi: 10.1080/14786448508627791
29. Meng, X., and Wang, Y., “Modeling Dynamic Flows of Grain-Fluid Mixtures by Coupling the Mixture Theory with a Dilatancy Law,” Acta Mechanica, V. 229, No. 6, 2018, pp. 2521-2538. doi: 10.1007/s00707-018-2111-9
30. Hosseinpoor, M.; Ouro Koura, B.-I.; and Yahia, A., “New Methodology to Evaluate the Reynolds Dilatancy of Self-Consolidating Concrete Using 3D Image Analysis—Coupled Effect of Characteristics of Fine Mortar and Granular Skeleton,” Cement and Concrete Composites, V. 108, 2020, p. 103547. doi: 10.1016/j.cemconcomp.2020.103547
31. Leighton, D., and Acrivos, A., “Measurement of Shear-Induced Self-Diffusion in Concentrated Suspensions of Spheres,” Journal of Fluid Mechanics, V. 177, 1987, pp. 109-131. doi: 10.1017/S0022112087000880
32. Leighton, D., and Acrivos, A., “The Shear-Induced Migration of Particles in Concentrated Suspensions,” Journal of Fluid Mechanics, V. 181, No. 1, 1987, pp. 415-439. doi: 10.1017/S0022112087002155
33. Phillips, R. J.; Armstrong, R. C.; Brown, R. A.; Graham, A. L.; and Abbott, J. R., “A Constitutive Equation for Concentrated Suspensions that Accounts for Shear-Induced Particle Migration,” Physics of Fluids A: Fluid Dynamics, V. 4, No. 1, 1992, pp. 30-40.
34. Krieger, I. M., and Dougherty, T. J., “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres,” Transactions of the Society of Rheology, V. 3, No. 1, 1959, pp. 137-152. doi: 10.1122/1.548848
35. Lam, Y. C.; Chen, X.; Tan, K. W.; Chai, J. C.; and Yu, S. C. M., “Numerical Investigation of Particle Migration in Poiseuille Flow of Composite System,” Composites Science and Technology, V. 64, No. 7-8, 2004, pp. 1001-1010. doi: 10.1016/j.compscitech.2003.08.005
36. Snook, B.; Butler, J. E.; and Guazzelli, É., “Dynamics of Shear-Induced Migration of Spherical Particles in Oscillatory Pipe Flow,” Journal of Fluid Mechanics, V. 786, 2016, pp. 128-153. doi: 10.1017/jfm.2015.645
37. Haustein, M. A.; Zhang, G.; and Schwarze, R., “Segregation of Granular Materials in a Pulsating Pumping Regime,” Granular Matter, V. 21, No. 4, 2019, p. 111. doi: 10.1007/s10035-019-0967-6
38. Haustein, M. A.; Kluwe, M. N.; and Schwarze, R., “Experimental Investigation of the Pumping of a Model-Concrete through Pipes,” Materials (Basel), V. 13, No. 5, 2020, p. 1161. doi: 10.3390/ma13051161
39. Feys, D.; De Schutter, G.; Khayat, K. H.; and Verhoeven, R., “Changes in Rheology of Self-Consolidating Concrete Induced by Pumping,” Materials and Structures, V. 49, No. 11, 2016, pp. 4657-4677. doi: 10.1617/s11527-016-0815-7
40. Hirt, C. W., and Nichols, B. D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics, V. 39, No. 1, 1981, pp. 201-225. doi: 10.1016/0021-9991(81)90145-5
41. Schwarze, R., CFD-Modellierung: Grundlagen und Anwendungen bei Strömungsprozessen, Springer-Verlag, Berlin/Heidelberg, Germany, 2013, 193 pp. (in German)
42. Choi, M.; Roussel, N.; Kim, Y.; and Kim, J., “Lubrication Layer Properties during Concrete Pumping,” Cement and Concrete Research, V. 45, 2013, pp. 69-78. doi: 10.1016/j.cemconres.2012.11.001
43. Nerella, V. N., and Mechtcherine, V., “Virtual Sliding Pipe Rheometer for Estimating Pumpability of Concrete,” Construction and Building Materials, V. 170, 2018, pp. 366-377. doi: 10.1016/j.conbuildmat.2018.03.003
44. Secrieru, E.; Khodor, J.; Schröfl, C.; and Mechtcherine, V., “Formation of Lubrication Layer and Flow Type during Pumping of Cement-Based Materials,” Construction and Building Materials, V. 178, 2018, pp. 507-517. doi: 10.1016/j.conbuildmat.2018.05.118
45. Jo, S. D.; Park, C. K.; Jeong, J. H.; Lee, S. H.; and Kwon, S. H., “A Computational Approach to Estimating a Lubricating Layer in Concrete Pumping,” Computers, Materials and Continua, V. 27, No. 3, 2012, pp. 189-210.
46. Choi, M. S., “Numerical Prediction on the Effects of the Coarse Aggregate Size to the Pipe Flow of Pumped Concrete,” Journal of Advanced Concrete Technology, V. 12, No. 8, 2014, pp. 239-249. doi: 10.3151/jact.12.239
47. Hafid, H.; Ovarlez, G.; Toussaint, F.; Jezequel, P. H.; and Roussel, N., “Estimating Measurement Artifacts in Concrete Rheometers from MRI Measurement on Model Materials,” Design, Production and Placement of Self-Consolidating Concrete: Proceedings of SCC2010, Montreal, QC, Canada, K. H. Khayat and D. Feys, eds., Springer, Dordrecht, the Netherlands, 2010, pp. 127-137.
48. Chateau, X.; Ovarlez, G.; and Trung, K. L., “Homogenization Approach to the Behavior of Suspensions of Noncolloidal Particles in Yield Stress Fluids,” Journal of Rheology, V. 52, No. 2, 2008, pp. 489-506. doi: 10.1122/1.2838254
49. Szecsy, R. S., “Concrete Rheology,” PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1997, 215 pp.
50. Cundall, P. A., “A Computer Model for Simulating Progressive, Large-Scale Movement in Blocky Rock System,” Proceedings of the International Symposium on Rock Mechanics, Nancy, France, Oct. 1971.
51. Cundall, P. A., and Strack, O. D. L., “A Discrete Numerical Model for Granular Assemblies,” Géotechnique, V. 29, No. 1, 1979, pp. 47-65. doi: 10.1680/geot.1979.29.1.47
52. Roussel, N.; Geiker, M. R.; Dufour, F.; Thrane, L. N.; and Szabo, P., “Computational Modeling of Concrete Flow: General Overview,” Cement and Concrete Research, V. 37, No. 9, 2007, pp. 1298-1307. doi: 10.1016/j.cemconres.2007.06.007
53. Roussel, N.; Gram, A.; Cremonesi, M.; Ferrara, L.; Krenzer, K.; Mechtcherine, V.; Shyshko, S.; Skocec, J.; Spangenberg, J.; Svec, O.; Thrane, L. N.; and Vasilic, K., “Numerical Simulations of Concrete Flow: A Benchmark Comparison,” Cement and Concrete Research, V. 79, 2016, pp. 265-271. doi: 10.1016/j.cemconres.2015.09.022
54. Gram, A., and Silfwerbrand, J., “Numerical Simulation of Fresh SCC Flow: Applications,” Materials and Structures, V. 44, No. 4, 2011, pp. 805-813. doi: 10.1617/s11527-010-9666-9
55. Zhan, Y.; Gong, J.; Huang, Y.; Shi, C.; Zuo, Z.; and Chen, Y., “Numerical Study on Concrete Pumping Behavior via Local Flow Simulation with Discrete Element Method,” Materials (Basel), V. 12, No. 9, 2019, p. 1415. doi: 10.3390/ma12091415
56. Liu, G. R., and Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific Publishing Co. Pte. Ltd., Singapore, 472 pp.
57. Abo Dhaheer, M. S.; Kulasegaram, S.; and Karihaloo, B. L., “Simulation of Self-Compacting Concrete Flow in the J-Ring Test Using Smoothed Particle Hydrodynamics (SPH),” Cement and Concrete Research, V. 89, 2016, pp. 27-34. doi: 10.1016/j.cemconres.2016.07.016
58. Tran-Duc, T.; Ho, T.; and Thamwattana, N., “A Smoothed Particle Hydrodynamics Study on Effect of Coarse Aggregate on Self-Compacting Concrete Flows,” International Journal of Mechanical Sciences, V. 190, 2021, p. 106046. doi: 10.1016/j.ijmecsci.2020.106046
59. Martys, N. S.; George, W. L.; Murphy, R. P.; and Weigandt, K. M., “Pipe Flow of Sphere Suspensions Having a Power-Law Dependent Fluid Matrix,” Journal of Rheology, V. 64, No. 2, 2020, pp. 445-457. doi: 10.1122/1.5131021
60. Tran-Duc, T.; Ho, T.; and Thamwattana, N., “A Smoothed Particle Hydrodynamics Study on Effect of Coarse Aggregate on Self-Compacting Concrete Flows,” International Journal of Mechanical Sciences, V. 190, 2021, p. 106046. doi: 10.1016/j.ijmecsci.2020.106046
61. Kieckhefen, P.; Pietsch, S.; Dosta, M.; and Heinrich, S., “Possibilities and Limits of Computational Fluid Dynamics—Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends,” Annual Review of Chemical and Biomolecular Engineering, V. 11, 2020, pp. 397-422. doi: 10.1146/annurev-chembioeng-110519-075414
62. Zhou, M.; Wang, S.; Kuang, S.; Luo, K.; Fan, J.; and Yu, A., “CFD-DEM Modelling of Hydraulic Conveying of Solid Particles in a Vertical Pipe,” Powder Technology, V. 354, 2019, pp. 893-905. doi: 10.1016/j.powtec.2019.07.015
63. Tan, Y.; Zhang, H.; Yang, D.; Jiang, S.; Song, J.; and Sheng, Y., “Numerical Simulation of Concrete Pumping Process and Investigation of Wear Mechanism of the Piping Wall,” Tribology International, V. 46, No. 1, 2012, pp. 137-144.
64. Jiang, S.; Chen, X.; Cao, G.; Tan, Y.; Xiao, X.; Zhou, Y.; Liu, S.; Tong, Z.; and Wu, Y., “Optimization of Fresh Concrete Pumping Pressure Loss with CFD-DEM Approach,” Construction and Building Materials, V. 276, 2021, p. 122204. doi: 10.1016/j.conbuildmat.2020.122204