A Model for Shear Resistance of Reinforced Concrete Beams

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: A Model for Shear Resistance of Reinforced Concrete Beams

Author(s): Joao Lima, Luciano Reis, and Denio Oliveira

Publication: Structural Journal

Volume: 118

Issue: 5

Appears on pages(s): 17-26

Keywords: reinforced concrete beam; shear reinforcement; shear stress

DOI: 10.14359/51732863

Date: 9/1/2021

Abstract:
The analysis of the strength ability of beams with shear stirrups involves problems with complex interactions between parameters. This paper introduces a new formulation to verify the shear strength of beams with stirrups for diagonal tensile burst by univariate power regressions to evaluate the preponderance of degrees of the most common shear factors from an initial database with 90 beams. Analyzing the performance of the standards codes, empirical models, and theoretical models with another 160 different tests and a seven-beam experimental program designates the accuracy of the models.

Related References:

1. Collins, M. P.; Mitchell, D.; Adebar, P.; Vecchio, F. J., “A General Shear Design Method,” ACI Structural Journal, V. 93, No. 5, Sept.-Oct. 1996, pp. 36-60.

2. Zhang, J. P., “Diagonal Cracking and Shear Strength of Reinforced Concrete Beams,” Magazine of Concrete Research, V. 49, No. 178, 1997, pp. 55-65. doi: 10.1680/macr.1997.49.178.55

3. Ismail, K. S.; Guadagnini, M.; and Pilakoutas, K., “Shear Behavior of Reinforced Concrete Deep Beams,” ACI Structural Journal, V. 114, No. 1, Jan.-Feb. 2017, pp. 87-99.

4. Sneed, L. H., and Ramirez, J. A., “Influence of Cracking on Behavior and Shear Strength of Reinforced Concrete Beams,” ACI Structural Journal, V. 111, No. 1, Jan.-Feb. 2014, pp. 157-166.

5. Panda, S. S., and Gangolu, A. R., “Study of Dowel Action in Reinforced Concrete Beam by Factorial Design of Experiment,” ACI Structural Journal, V. 114, No. 6, Nov.-Dec. 2017, pp. 1495-1505. doi: 10.14359/51700831

6. Bažant, Z. P., and Kazemi, M. T., “Size Effect on Diagonal Shear Failure of Beams Without Stirrups,” ACI Structural Journal, V. 88, No. 3, May-June 1991, pp. 268-276.

7. Conforti, A.; Minelli, F.; and Plizzari, G. A., “Influence of Width-to-Effective Depth Ratio on Shear Strength of Reinforced Concrete Elements without Web Reinforcement,” ACI Structural Journal, V. 114, No. 4, July-Aug. 2017, pp. 995-1006. doi: 10.14359/51689681

8. Zsutty, T., “Shear Strength Prediction for Separate Categories of Simple Beam Tests,” ACI Structural Journal, V. 68, No. 2, Feb. 1971, pp. 138-143.

9. Russo, G.; Somma, G.; and Mitri, D., “Shear Strength Design Formula for RC Beams with Stirrups,” Engineering Structures, ASCE, V. 51, 2005, pp. 66-74. doi: 10.1061/(ASCE)0733-9445(2005)131:1(66)

10. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.

11. European Committee for Standardization, “Eurocode 2: Design of Concrete Structures—Part. 1: General Rules and Rules for Buildings (EN 1992-1-1),” CEN, Brussels, Belgium, 2004, 225 pp.

12. Bentz, E. C.; Vecchio, F. J.; and Collins, M. P., “Simplified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements,” ACI Structural Journal, V. 103, No. 4, July-Aug. 2006, pp. 614-624.

13. Vecchio, F. J., and Collins, M. P., “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal Proceedigns, V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231.

14. American Association of State Highways and Transportation Officials, “AASHTO LRFD Bridge Design Specifications,” eighth edition, AASHTO, Washington, DC, 2017.

15. Russo, G.; Mitri, D.; and Pauletta, M., “Shear Strength Analysis and Prediction for Reinforced Concrete Beams Without,” Journal of Structural Engineering, V. 51, 2013, pp. 226-235.

16. Adebar, P., and Collins, M. P., “Shear Strength of Members without Transverse Reinforcement,” Canadian Journal of Civil Engineering, V. 23, No. 2, 1996, pp. 297-305. doi: 10.1139/l96-004

17. Angelakos, D., “The Influence of the Concrete Strength and Longitudinal Reinforcement Ratio on the Shear Strength of Large-Size Reinforced Concrete Beams with and without Transverse Reinforcement,” master’s thesis, Civil Engineering Department, University of Toronto, Toronto, ON, Canada, 1999.

18. Belarbi, A., and Hsu, T. T. C., “Stirrups Stresses in Reinforced Concrete Beams,” ACI Structural Journal, V. 87, No. 5, Sept.-Oct. 1990, pp. 530-538.

19. Bresler, B., and Scordelis, A. C., “Shear Strength of Reinforced Concrete Beams,” ACI Journal Procedings, V. 60, No. 4, Apr. 1963, pp. 51-74.

20. Bresler, B., and Scordelis, A. C., “Shear Strength of Reinforced Concrete Beams - Series III,” Structures and Materials Research, V. 65, No. 10, 1966, pp. 51-74.

21. Cladera, A., “Shear Design of Reinforced High-Strength Concrete Beam,” PhD thesis, Departamento d’Enginyeria de la Construccón, Universitat Politécnica de Catalunã, Barcelona, Spain, 2002, 325 pp.

22. Clark, A. P., “Diagonal Tension in Reinforced Concrete Beams,” ACI Journal Proceedings, V. 48, No. 10, Oct. 1951, pp. 145-156.

23. Etxeberria, M., “Experimental Study on Microstructure and Structural Behavior of Recycled Aggregate Concrete,” PhD thesis, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain, 2004, 230 pp.

24. Fernandes, G. B., “Cisalhamento em Vigas de Alta Resistência,” Revista Téchne, No. 13, 1994, pp. 27-30.

25. Gonzalez, F. B., “Hormigones com Áridos Reciclados Procedentes de Demoliciones, Propiedades Mecênicas e Comportamento Estructural a Cortante,” PhD thesis, Universidad de la Coruña, Coruña, Spain, 2002, 358 pp.

26. Haddadin, H. J.; Hong, S.; and Mattock, A. H., “Stirrup Effectiveness in Reinforced Concrete Beams with Axial Force,” Journal of Structural Division Proceedings of the ASCE, V. 97, No. 9, 1971, pp. 2277-2297. doi: 10.1061/JSDEAG.0002996

27. Karayiannis, C. G., and Chalioris, C. E., 1999, “Experimental Investigation of the Influence of Stirrups on the Shear Failure Mechanism of Reinforced Concrete Beams,” Proceedings of 13th Hellenic Conference on Concrete, Rethymnon, Greece, V. 1, 1999, pp. 133-141. (in Greek)

28. Kong, P. Y. L., and Rangan, B. V., “Shear Strength of High-Performance Concrete Beams,” ACI Structural Journal, V. 95, No. 6, Nov.-Dec. 1998, pp. 677-688.

29. Mansour, M. Y.; Dicleli, M.; Lee, J. Y.; and Zhang, J., “Predicting the Shear Strength of Reinforced Concrete Beams Using Artificial Neural Networks,” Engineering Structures, V. 26, No. 6, 2004, pp. 781-799. doi: 10.1016/j.engstruct.2004.01.011

30. Moretto, O., “An Investigation of Strength of Welded Stirrups in Reinforced Concrete Beams,” ACI Journal Proceedings, V. 17, No. 2, 1945, pp. 141-162.

31. Mphonde, A. G., and Frantz, G. C., “Shear Test of High and Low-Strength Concrete Beams without Strirrups,” ACI Journal Proceedings, V. 81, No. 4, July-Aug. 1984, pp. 350-357.

32. Ozcebe, G.; Ersoy, U.; and Tankut, T., “Evaluation of Minimum Shear Reinforcement Requirements for Higher Strength Concrete,” ACI Structural Journal, V. 96, No. 3, May-June 1999, pp. 361-368.

33. Placas, A., and Regan, P. E., “Shear Failure of Reinforced Concrete Beams,” ACI Journal Proceedings, V. 68, No. 10, Oct. 1971, pp. 763-773.

34. Teoh, B. K.; Mansur, M. A.; and Wee, T. H., “Behavior of High-Strength Concrete I-Beams with Low Shear Reinforcement,” ACI Structural Journal, V. 99, No. 3, 2002, pp. 299-307.

35. Yoon, Y. S.; Cook, W. D.; and Mitchell, D., “Minimum Shear Reinforcement in Normal, Medium and High-Strength Concrete Beams,” ACI Structural Journal, V. 93, No. 5, Sept.-Oct. 1996, pp. 576-584.

36. NBR 6118, “Projeto e Execução de Obras de Concreto Armado,” Associação Brasileira De Normas Técnicas, Rio de Janeiro, 2014, 238 pp.

37. NBR 6152, “Materiais Metálicos – Ensaio de Tração à Temperatura Ambiente,” Associação Brasileira De Normas Técnicas, Rio de Janeiro, 1992, 13 pp.

38. NBR 5738, “Concreto — Procedimento para moldagem e cura de corpos de prova,” Associação Brasileira De Normas Técnicas, Rio de Janeiro, 2015, 9 pp.

39. NBR 5739, “Concreto - Ensaio de compressão de corpos-de-prova cilíndricos,” Associação Brasileira De Normas Técnicas, Rio de Janeiro, 2018, 9 pp.

40. NBR 7222, “Concreto e argamassa – Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos,” Associação Brasileira De Normas Técnicas, Rio de Janeiro, 2011, 5 pp.

41. NBR 8522, “Concreto - Determinação dos módulos estáticos de elasticidade e de deformação à compressão,” Associação Brasileira De Normas Técnicas, Rio de Janeiro, 2011, 20 pp.

42. Bahl, N. S., “On the Effect of Beam Depth to Shear Strength of Simply Supported Reinforced Concrete Beams with and without Shear Reinforcement,” PhD thesis, Universität Stuttgart, Stuttgart, Germany, 1968, 125 pp.

43. Carelli, J. A., “Cisalhamento em Vigas de Concreto Armado com Estribos Autotravantes,” MASc thesis, Department of Civil Engineering, Universidade Federal de Santa Catarina, Florianopolis, Brazil, 2002, 162 pp.

44. Cederwall, K.; Hedman, O.; Loeberg, A.; Bennett, E. W.; Dabaiky, S. Y.; Regan, P. E.; Khan, M. H.; Sorensen, H. C.; Rangan, B. V.; Tang, Man Chung; Seabold, B. V.; Brown, R. H.; Jirsa, J. O.; Somes, N. F.; and Corley, W. G., Shear In Reinforced Concrete, SP-42, American Concrete Institute, Farmington Hills, MI, 1974.

45. Collins, M. P., and Kuchuma, D., “How Safe Are Our Large, Lightly Reinforced Concrete Beams, Slabs and Footings?” ACI Structural Journal, V. 96, No. 4, July-Aug. 1999, pp. 482-490.

46. Johnson, M. K., and Ramirez, J. A., “Minimum Shear Reinforcement in Beams with Higher Strength Concrete,” ACI Structural Journal, V. 86, No. 4, July-Aug. 1989, pp. 376-382.

47. Leonhardt, F., and Walther, R., “Shear Tests of Single Span RC Beams with and without Stirrups,” PhD thesis, Deutscher Ausschuss f¨ur Stahlbeton, Berlin, Germany, 1962, 151 pp.

48. Lim, D. H., and Oh, B. H., “Experimental and Theoretical Investigation on the Shear of Steel Fibre Reinforced Concrete Beam,” Engineering Structures, V. 21, No. 10, 1999, pp. 937-944. doi: 10.1016/S0141-0296(98)00049-2

49. Reineck, K.-H.; Bentz, E.; Fitik, B.; Kuchma, D. A.; and Bayrak, O., “ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups,” ACI Structural Journal, V. 111, No. 5, Sept.-Oct. 2014, pp. 1147-1192. doi: 10.14359/51686819

50. Roller, J. J., and Russel, H. G., “Shear Strength of High Strength Concrete Beams with Web Reinforcement,” ACI Structural Journal, V. 87, No. 2, Mar.-Apr. 1990, pp. 191-198.

51. Shin, S.; Lee, K.; Moon, J.; and Ghosh, K., “Shear Strength of Reinforced High-Strength Concrete Beams with Shear Span-to-Depth Ratios between 1.5 and 2.5,” ACI Structural Journal, V. 96, No. 4, July-Aug. 1999, pp. 549-556.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer