Mortar with Opuntia Ficus-Indica Mucilage Additions Exposed to CO2-Laden Environment

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Mortar with Opuntia Ficus-Indica Mucilage Additions Exposed to CO2-Laden Environment

Author(s): Andrés A. Torres-Acosta and Paola Y. González-Calderón

Publication: Materials Journal

Volume: 118

Issue: 5

Appears on pages(s): 75-82

Keywords: additions; carbonation; durability; mortar; Opuntia ficus-indica (OFI) mucilage

DOI: 10.14359/51732796

Date: 9/1/2021

Abstract:
Mortar cubes containing different addition levels (0, 1.5, 4, 8, 42, and 95%, by water mass replacement concentration) of Opuntia ficus-indica (OFI) mucilage were exposed for a 14-year (5110-day) period in a natural CO2-laden environment. Physical characterization tests were performed on the mortar cubes, such as saturated electrical resistivity (ρS), percent total void content (%TV), water capillary absorption (εEFF), and compressive strength (fc). Changes in pH due to carbonation were also determined, and carbonation rates (KCO2 ) were recorded. Findings suggest that the addition of OFI mucilage concentrations between 4 and 8% (by water mass replacement) may be suitable for durability-enhancing applications in cement-based mortar exposed to carbonation-induced environments.

Related References:

1. Torres-Acosta, A. A., and Díaz-Cruz, L. A., “Concrete Durability Enhancement from Nopal (Opuntia Ficus-Indica) Additions,” Construction and Building Materials, V. 243, May 2020, p. 118170. doi: 10.1016/j.conbuildmat.2020.118170

2. Torres-Acosta, A. A., “Water and Chloride Permeability of Cement-Based Mortar with Additions of Dehydrated Cacti,” Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), V. 94, No. 11, 2019, pp. 3488-3494. doi: 10.1002/jctb.5938

3. Hernández, E. F.; Cano-Barrita, P. F. J.; León-Martínez, F. M.; and Torres-Acosta, A. A., “Performance of Cactus Mucilage and Brown Seaweed Extract as a Steel Corrosion Inhibitor in Chloride Contaminated Alkaline Media,” Anti-Corrosion Methods and Materials, V. 64, No. 5, 2017, pp. 529-539. doi: 10.1108/ACMM-02-2016-1646

4. Hernández, E. F.; Cano-Barrita, P. F. J.; and Torres-Acosta, A. A., “Influence of Cactus Mucilage and Marine Brown Algae Extract on the Compressive Strength and Durability of Concrete,” Materiales de Construcción, V. 66, No. 321, Jan.-Mar. 2016, p. e074.

5. Martinez-Molina, W.; Torres-Acosta, A.; Hernández-Leos, R.; Alonso Guzmán, E.; Mendoza-Pérez, I.; and Martínez-Peña, I., “The Inhibitive Properties of Nopal Slime on the Corrosion of Steel in Chloride-Contaminated Mortar,” Anti-Corrosion Methods and Materials, V. 63, No. 1, 2016, pp. 65-71. doi: 10.1108/ACMM-05-2014-1381

6. Martínez-Molina, W.; Torres-Acosta, A. A.; Celis-Mendoza, C. E.; and Alonso-Guzman, E., “Physical Properties of Cement-Based Paste and Mortar with Dehydrated Cacti Additions,” International Journal of Architectural Heritage, V. 9, No. 4, 2015, pp. 443-452. doi: 10.1080/15583058.2013.800919

7. Martinez-Molina, W.; Torres-Acosta, A. A.; Martínez-Peña, G. E. I.; Guzmán, E. A.; and Mendoza-Pérez, I. N., “Cement-Based, Materials-Enhanced Durability from Opuntia Ficus Indica Mucilage Additions,” ACI Materials Journal, V. 112, No. 1, Jan.-Feb. 2015, pp. 165-172. doi: 10.14359/51687225

8. Saenz, C.; Sepúlveda, E.; and Matsuhiro, B., “Opuntia Spp Mucilage’s: A Functional Component with Industrial Perspectives,” Journal of Arid Environments, V. 57, No. 3, 2004, pp. 275-290. doi: 10.1016/S0140-1963(03)00106-X

9. Torres-Acosta, A. A., “Opuntia-Ficus-Indica (Nopal) Mucilage as a Steel Corrosion Inhibitor in Alkaline Media,” Journal of Applied Electrochemistry, V. 37, No. 7, 2007, pp. 835-841. doi: 10.1007/s10800-007-9319-z

10. Torres-Acosta, A. A.; Martínez-Madrid, M.; Loveday, D. C.; and Silsbee, M. R., “Nopal and Aloe Vera Additions in Concrete: Electrochemical Behavior of the Reinforcing Steel,” Proceedings, Symposium New Developments in the Protection of Steel in Concrete (CORROSION 2005), Paper No. NACE-05269, April 3-7, Houston, TX, 2005.

11. NMX-C-414-ONNCCE-2017, “Building Industry—Hydraulic Cement—Specifications and Testing Methods,” El Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, Mexico City, Mexico, 2017.

12. ASTM C230/C230M-20, “Standard Specification for Flow Table for Use in Tests of Hydraulic Cement,” ASTM International, West Conshohocken, PA, 2020, 7 pp.

13. ASTM C305-20, “Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency,” ASTM International, West Conshohocken, PA, 2020, 3 pp.

14. ASTM C1876-19, “Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete,” ASTM International, West Conshohocken, PA, 2019, 7 pp.

15. ASTM C642-13, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” ASTM International, West Conshohocken, PA, 2013, 3 pp.

16. Trocónis de Rincón; and DURAR Network Collaborators, “DURAR Manual: Inspection, Evaluation and Diagnosis Manual of Corrosion in Reinforced Concrete Structures,” Maracaibo, Venezuela, 2007.

17. ASTM C109/C109M-20, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2020, 11 pp.

18. Trocónis de Rincón, O.; Montenegro, J. C.; Vera, R.; Carvajal, A. M.; de Gutiérrez, R. M.; Del Vasto, S.; Saborio, E.; Torres-Acosta, A.; Pérez-Quiroz, J.; Martínez-Madrid, M.; Martinez-Molina, W.; Alonso-Guzmán, E.; Castro-Borges, P.; Moreno, E. I.; Almeraya, F.; Gaona-Tiburcio, C.; Pérez-López, T.; Salta, M.; de Melo, A. P.; Martínez, I.; Rebolledo, N.; Rodríguez, G.; Pedrón, M.; Millano, V.; Sánchez, M.; and de Partidas, E., “Concrete Carbonation in Ibero-American Countries DURACON Project: Six-Year Evaluation,” Corrosion, V. 71, No. 4, 2015, pp. 546-555. doi: 10.5006/1385


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer