Title:
Mortar with Opuntia Ficus-Indica Mucilage Additions Exposed to CO2-Laden Environment
Author(s):
Andrés A. Torres-Acosta and Paola Y. González-Calderón
Publication:
Materials Journal
Volume:
118
Issue:
5
Appears on pages(s):
75-82
Keywords:
additions; carbonation; durability; mortar; Opuntia ficus-indica (OFI) mucilage
DOI:
10.14359/51732796
Date:
9/1/2021
Abstract:
Mortar cubes containing different addition levels (0, 1.5, 4, 8, 42, and 95%, by water mass replacement concentration) of Opuntia ficus-indica (OFI) mucilage were exposed for a 14-year (5110-day) period in a natural CO2-laden environment. Physical characterization tests were performed on the mortar cubes, such as saturated electrical resistivity (ρS), percent total void content (%TV), water capillary absorption (εEFF), and compressive strength (fc). Changes in pH due to carbonation were also determined, and carbonation rates (KCO2 ) were recorded. Findings suggest that the addition of OFI mucilage concentrations between 4 and 8% (by water mass replacement) may be suitable for durability-enhancing applications in cement-based mortar exposed to carbonation-induced environments.
Related References:
1. Torres-Acosta, A. A., and Díaz-Cruz, L. A., “Concrete Durability Enhancement from Nopal (Opuntia Ficus-Indica) Additions,” Construction and Building Materials, V. 243, May 2020, p. 118170. doi: 10.1016/j.conbuildmat.2020.118170
2. Torres-Acosta, A. A., “Water and Chloride Permeability of Cement-Based Mortar with Additions of Dehydrated Cacti,” Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), V. 94, No. 11, 2019, pp. 3488-3494. doi: 10.1002/jctb.5938
3. Hernández, E. F.; Cano-Barrita, P. F. J.; León-Martínez, F. M.; and Torres-Acosta, A. A., “Performance of Cactus Mucilage and Brown Seaweed Extract as a Steel Corrosion Inhibitor in Chloride Contaminated Alkaline Media,” Anti-Corrosion Methods and Materials, V. 64, No. 5, 2017, pp. 529-539. doi: 10.1108/ACMM-02-2016-1646
4. Hernández, E. F.; Cano-Barrita, P. F. J.; and Torres-Acosta, A. A., “Influence of Cactus Mucilage and Marine Brown Algae Extract on the Compressive Strength and Durability of Concrete,” Materiales de Construcción, V. 66, No. 321, Jan.-Mar. 2016, p. e074.
5. Martinez-Molina, W.; Torres-Acosta, A.; Hernández-Leos, R.; Alonso Guzmán, E.; Mendoza-Pérez, I.; and Martínez-Peña, I., “The Inhibitive Properties of Nopal Slime on the Corrosion of Steel in Chloride-Contaminated Mortar,” Anti-Corrosion Methods and Materials, V. 63, No. 1, 2016, pp. 65-71. doi: 10.1108/ACMM-05-2014-1381
6. Martínez-Molina, W.; Torres-Acosta, A. A.; Celis-Mendoza, C. E.; and Alonso-Guzman, E., “Physical Properties of Cement-Based Paste and Mortar with Dehydrated Cacti Additions,” International Journal of Architectural Heritage, V. 9, No. 4, 2015, pp. 443-452. doi: 10.1080/15583058.2013.800919
7. Martinez-Molina, W.; Torres-Acosta, A. A.; Martínez-Peña, G. E. I.; Guzmán, E. A.; and Mendoza-Pérez, I. N., “Cement-Based, Materials-Enhanced Durability from Opuntia Ficus Indica Mucilage Additions,” ACI Materials Journal, V. 112, No. 1, Jan.-Feb. 2015, pp. 165-172. doi: 10.14359/51687225
8. Saenz, C.; Sepúlveda, E.; and Matsuhiro, B., “Opuntia Spp Mucilage’s: A Functional Component with Industrial Perspectives,” Journal of Arid Environments, V. 57, No. 3, 2004, pp. 275-290. doi: 10.1016/S0140-1963(03)00106-X
9. Torres-Acosta, A. A., “Opuntia-Ficus-Indica (Nopal) Mucilage as a Steel Corrosion Inhibitor in Alkaline Media,” Journal of Applied Electrochemistry, V. 37, No. 7, 2007, pp. 835-841. doi: 10.1007/s10800-007-9319-z
10. Torres-Acosta, A. A.; Martínez-Madrid, M.; Loveday, D. C.; and Silsbee, M. R., “Nopal and Aloe Vera Additions in Concrete: Electrochemical Behavior of the Reinforcing Steel,” Proceedings, Symposium New Developments in the Protection of Steel in Concrete (CORROSION 2005), Paper No. NACE-05269, April 3-7, Houston, TX, 2005.
11. NMX-C-414-ONNCCE-2017, “Building Industry—Hydraulic Cement—Specifications and Testing Methods,” El Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, Mexico City, Mexico, 2017.
12. ASTM C230/C230M-20, “Standard Specification for Flow Table for Use in Tests of Hydraulic Cement,” ASTM International, West Conshohocken, PA, 2020, 7 pp.
13. ASTM C305-20, “Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency,” ASTM International, West Conshohocken, PA, 2020, 3 pp.
14. ASTM C1876-19, “Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete,” ASTM International, West Conshohocken, PA, 2019, 7 pp.
15. ASTM C642-13, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” ASTM International, West Conshohocken, PA, 2013, 3 pp.
16. Trocónis de Rincón; and DURAR Network Collaborators, “DURAR Manual: Inspection, Evaluation and Diagnosis Manual of Corrosion in Reinforced Concrete Structures,” Maracaibo, Venezuela, 2007.
17. ASTM C109/C109M-20, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2020, 11 pp.
18. Trocónis de Rincón, O.; Montenegro, J. C.; Vera, R.; Carvajal, A. M.; de Gutiérrez, R. M.; Del Vasto, S.; Saborio, E.; Torres-Acosta, A.; Pérez-Quiroz, J.; Martínez-Madrid, M.; Martinez-Molina, W.; Alonso-Guzmán, E.; Castro-Borges, P.; Moreno, E. I.; Almeraya, F.; Gaona-Tiburcio, C.; Pérez-López, T.; Salta, M.; de Melo, A. P.; Martínez, I.; Rebolledo, N.; Rodríguez, G.; Pedrón, M.; Millano, V.; Sánchez, M.; and de Partidas, E., “Concrete Carbonation in Ibero-American Countries DURACON Project: Six-Year Evaluation,” Corrosion, V. 71, No. 4, 2015, pp. 546-555. doi: 10.5006/1385