Artificial Neural Network Model for Strength Prediction of Ultra-High-Performance Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Artificial Neural Network Model for Strength Prediction of Ultra-High-Performance Concrete

Author(s): Joaquín Abellán-García

Publication: Materials Journal

Volume: 118

Issue: 4

Appears on pages(s): 3-14

Keywords: activation function; artificial neural network (ANN); compressive strength; resilient backpropagation algorithm (Rprop); supplementary cementitious material (SCM); ultra-high-performance concrete (UHPC)

DOI: 10.14359/51732710

Date: 7/1/2021

Abstract:
Ultra-high-performance concrete (UHPC) is the outcome of the mixture of several constituents, leading to a highly complex material, which makes it more difficult to understand the effect of each component and their interactions on compressive strength. This research goal is developing an artificial neural network (ANN) approach to predict the compressive strength of UHPC, being able to incorporate supplementary cementitious materials (SCMs), and even different situations in relation to the aggregate: from pastes to incorporation of coarse aggregate. The one-hidden-layer ANN model was trained with 927 data by using the R-code language. The data was produced by collecting data from 210 experiments combined with 717 dosages from previous research. The Olden algorithm was used to analyze the relationships between the UHPC’s components and strength. The results indicated that the ANN is an efficient model for predicting the compressive strength of UHPC, regardless of the SCM used or maximum size of aggregate considered.

Related References:

1. Abellán, J.; Torres, N.; Núñez, A.; and Fernández, J., “Ultra High Performance Fiber Reinforced Concrete: State of the Art, Applications and Possibilities into the Latin American Market,” XXXVIII Jornadas Sudamericanas de Ingeniería Estructural, Lima, Peru, 2018.

2. Abellán, J.; Torres, N.; Núñez, A.; and Fernández, J., “Influencia del Exponente de Fuller, la Relación Agua Conglomerante y el Contenido en Policarboxilato en Concretos de Muy Altas Prestaciones,” IV Congreso Internacional de Ingeniería Civil, Havana, Cuba, 2018.

3. Zhang, J.; Zhao, Y.; and Li, H., “Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete (UHPC) Containing Supplementary Cementitious Materials,” Advances in Materials Science and Engineering, V. 2017, 2017, pp. 522-525. doi: 10.1155/2017/4563164

4. Ghafari, E.; Bandarabadi, M.; Costa, H.; and Júlio, E., “Prediction of Fresh and Hardened State Properties of UHPC: Comparative Study of Statistical Mixture Design and an Artificial Neural Network Model,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 11, 2015, p.  04015017. doi: 10.1061/(ASCE)MT.1943-5533.0001270

5. ACI Committee 239, “Ultra-High-Performance Concrete: An Emerging Technology Report (ACI 239R-18),” American Concrete Institute, Farmington Hills, MI, 2018, 21 pp.

6. Abellán-García, J.; Núñez-López, A.; Torres-Castellanos, N.; and Fernández-Gómez, J., “Effect of FC3R on the Properties of Ultra-High-Performance Concrete with Recycled Glass,” Dyna (Bilbao), V. 86, No.  211, 2019, pp. 84-93. doi: 10.15446/dyna.v86n211.79596

7. Abellán-García, J.; Núñez-López, A.; Torres-Castellanos, N.; and Fernández-Gómez, J., “Factorial Design of Reactive Concrete Powder Containing Electric Arc Slag Furnace and Recycled Glass Powder,” Dyna (Bilbao), V. 87, No. 213, 2020, pp. 42-51. doi: 10.15446/dyna.v87n213.82655

8. Abellán-García, J., “Four-Layer Perceptron Approach for Strength Prediction of UHPC,” Construction and Building Materials, V. 256, 2020, p. 119465. doi: 10.1016/j.conbuildmat.2020.119465

9. Abellán, J.; Fernández, J.; Torres, N.; and Núñez, A., “Development of Cost-Efficient UHPC with Local Materials in Colombia,” Proceedings of Hipermat 2020 - 5th International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2020, pp. 97-98.

10. Meng, W.; Samaranayake, V.; and Khayat, K. H., “Factorial Design and Optimization of Ultra-High-Performance Concrete with Lightweight Sand,” ACI Materials Journal, V. 115, No. 1, Jan. 2018, pp. 129-138. doi: 10.14359/51700995

11. Abellán-García, J.; Santofimo-Vargas, M. A.; and Torres-Castellanos, N., “Analysis of Metakaolin as Partial Substitution of Ordinary Portland Cement in Reactive Powder Concrete,” Advances in Civil Engineering Materials, V. 9, No. 1, 2020, pp. 368-386. doi: 10.1520/ACEM20190224

12. Abellán-García, J.; Fernández-Gómez, J.; and Torres-Castellanos, N., “Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks,” European Journal of Environmental and Civil Engineering, 2020, pp. 1-25. doi: 10.1080/19648189.2020.1762749

13. Camacho, E.; López, J. Á.; and Serna, P., “Definition of Three Levels of Performance for UHPFRC-VHPFRC with Available Materials,” 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, and S. Piotrowski, eds., Kassel University, Kassel, Germany, 2012, pp. 249-256.

14. Camacho Torregrosa, E. E., “Dosage Optimization and Bolted Connections for UHPFRC Ties,” PhD thesis, Universitat Politècnica de València, València, Spain, 2013, 276 pp.

15. Li, W.; Huang, Z.; Zu, T.; Shi, C.; Duan, W. H.; and Shah, S. P., “Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 1, 2016, pp. 1-9. doi: 10.1061/(ASCE)MT.1943-5533.0001327

16. Huang, Z., and Cao, F., “Effects of Nano-Materials on the Performance of UHPC,” Materials Review B, Research, V. 26, No. 9, 2012, pp.  136-141.

17. Soliman, N. A., and Tagnit-Hamou, A., “Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap,” Construction and Building Materials, V. 139, 2017, pp. 374-383. doi: 10.1016/j.conbuildmat.2017.02.084

18. Tagnit-Hamou, A.; Soliman, N.; and Omran, A., “Green Ultra-High-Performance Glass Concrete,” First International Interactive Symposium on UHPC, 2016.

19. Soliman, N. A., and Tagnit-Hamou, A., “Using Glass Sand as an Alternative for Quartz Sand in UHPC,” Construction and Building Materials, V. 145, 2017, pp. 243-252. doi: 10.1016/j.conbuildmat.2017.03.187

20. Viet Thein An, V., and Ludwig, H.-M., “Proportioning Optimization of UHPC Containing Rice Husk Ash and Ground Granulated Blast-Furnace Slag,” 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, and S. Piotrowski, eds., Kassel University, Kassel, Germany, 2012, pp. 197-205.

21. Chandwani, V.; Agrawal, V.; and Nagar, R., “Modeling Slump of Ready Mix Concrete Using Genetic Algorithms Assisted Training of Artificial Neural Networks,” Expert Systems with Applications, V. 42, No. 2, 2015, pp. 885-893. doi: 10.1016/j.eswa.2014.08.048

22. Khashman, A., and Akpinar, P., “Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks,” Procedia Computer Science, V. 108, 2017, pp. 2358-2362. doi: 10.1016/j.procs.2017.05.039

23. Adeli, H., “Neural Networks in Civil Engineering: 1989 − 2000,” Computer-Aided Civil and Infrastructure Engineering, V. 16, No. 2, 2001, pp. 126-142. doi: 10.1111/0885-9507.00219

24. Getahun, M. A.; Shitote, S. M.; and Abiero Gariy, Z. C., “Artificial Neural Network Based Modelling Approach for Strength Prediction of Concrete Incorporating Agricultural and Construction Wastes,” Construction and Building Materials, V. 190, 2018, pp. 517-525. doi: 10.1016/j.conbuildmat.2018.09.097

25. Chandwani, V., and Nagar, R., “Applications of Artificial Neural Networks in Modeling Compressive Strength of Concrete: A State of the Art Review,” International Journal of Current Engineering and Technology, V. 4, No. 4, 2014, pp. 2949-2956.

26. Taghaddos, H.; Mahmoudzadeh, F.; Pourmoghaddam, A.; and Shekarchizadeh, M., “Prediction of Compressive Strength Behaviour in RPC with Applying an Adaptive Network-Based Fuzzy Interface System,” Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2004.

27. Schmidt, M.; Fehling, E.; and Geisenhanslükem, C., eds., Proceedings of the International Symposium on Ultra High Performance Concrete, University of Kassel, Kassel, Germany, 2004.

28. Fehling, E.; Schmidt, C.; and Stüwald, S., eds., Proceedings of the Second International Symposium on Ultra High Performance Concrete, University of Kassel, Kassel, Germany, 2008.

29. Schmidt, M.; Fehling, E.; Glotzbach, C.; Fröhlich, S.; and Piotrowski, S., eds., Proceedings of Hipermat 2012 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, University of Kassel, Kassel, Germany, 2012.

30. Fehling, E.; Middendorf, B.; and Thiemicke, J., eds., Proceedings of Hipermat 2016 4th International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, University of Kassel, Kassel, Germany, 2016.

31. Skazlic, M.; Bjegovic, D.; and Serdar, M., “Influence of Test Specimens Geometry on Compressive Strength of Ultra-High Performance Concrete,” Proceedings of the 2nd International Symposium on Ultra High Performance Concrete, Kassel, Germany, 2008, pp. 295-301.

32. Naaman, A. E., and Wille, K., “Some Correlation between High Packing Density, Ultra-High Performance, Flow Ability, and Fiber Reinforcement of a Concrete Matrix,” Bac2010, Congresso Ibêrico Sobre Betão Auto-Compactável, 2010.

33. Graybeal, B., and Davis, M., “Cylinder or Cube: Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber-Reinforced Concrete,” ACI Materials Journal, V. 105, No. 6, Nov.-Dec. 2008, pp.  603-609.

34. Atkinson, A., and Riani, M., Robust Diagnostic Regression Analysis, Springer, New York, 2000.

35. Härdle, W. K., and Simar, L., Applied Multivariate Statistical Analysis, Springer-Verlag GmbH, Berlin, Germany, 2012.

36. Everitt, B., and Hothorn, T., An Introduction to Applied Multivariate Analysis with R, Springer, New York, 2011, 288 pp.

37. Arizzi, A., and Cultrone, G., “Comparing the Pozzolanic Activity of Aerial Lime Mortars Made with Metakaolin and Fluid Catalytic Cracking Catalyst Residue: A Petrographic and Physical-Mechanical Study,” Construction and Building Materials, V. 184, 2018, pp. 382-390. doi: 10.1016/j.conbuildmat.2018.07.002

38. Torres Castellanos, N., “Estudio en Estado Fresco y Endurecido de Concretos Adicionados con Catalizados de Craqueo Catalítico Usado (FCC),” PhD thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2014.

39. Li, Z., and Rangaraju, P. R., “Development of UHPC Using Ternary Blends of Ultra-Fine Class F Fly Ash, Metakaolin and Portland Cement,” First International Interactive Symposium on UHPC, 2016, pp. 1-12. doi: 10.21838/uhpc.2016.6410.21838/uhpc.2016.64

40. Ferdosian, I.; Camões, A.; and Ribeiro, M., “High-Volume Fly Ash Paste for Developing Ultra-High Performance Concrete (UHPC),” Ciência e Tecnologia dos Materiais, V. 29, No. 1, 2017, pp. e157-e161. doi: 10.1016/j.ctmat.2016.10.001

41. Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; and Durães, L., “Enhanced Durability of Ultra High Performance Concrete by Incorporating Supplementary Cementitious Materials,” Second International Conference on Microstructure Related Durability of Cementitious Composites, Amsterdam, the Netherlands, 2012, pp. 11-13.

42. Cook, R. D., “Detection of Influential Observation in Linear Regression,” Technometrics, V. 19, No. 1, 1977, pp. 15-18. doi: 10.1080/00401706.1977.10489493

43. ASTM C109/C109M-11b, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2011, 9 pp.

44. Funk, J. E., and Dinger, D. R., Predictive Process Control of Crowded Particulate Suspensions. Applied to Ceramic Manufacturing, Springer Science, New York, 1994. doi: 10.1007/978-1-4615-3118-010.1007/978-1-4615-3118-0

45. Rosenblatt, F., “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psychological Review, V. 65, No. 6, 1958, pp. 386-408. doi: 10.1037/h0042519

46. Anderson, J. A., “Cognitive and Psychological Computation with Neural Models,” IEEE Transactions on Systems, Man, and Cybernetics, V.  13, No. 5, 1983, pp. 799-815. doi: 10.1109/TSMC.1983.6313074

47. Bharathi, S. D.; Manju, R.; and Premalatha, J., “Prediction of Compressive Strength for Self- Compacting Concrete (SCC) Using Artificial Intelligence and Regression Analysis,” International Journal of Chemtech Research, V. 10, No. 8, 2017, pp. 263-275.

48. Chollet, F., and Allaire, J. J., Deep Learning with R, Manning Publications Co., Shelter Island, NY, 2018.

49. Demir, F., “Prediction of Elastic Modulus of Normal and High Strength Concrete by Artificial Neural Networks,” Construction and Building Materials, V. 22, No. 7, 2008, pp. 1428-1435. doi: 10.1016/j.conbuildmat.2007.04.004

50. Estebon, M. D., “Perceptrons: An Associative Learning Network,” Virginia Tech, Blacksburg, VA, 1997.

51. Rumelhart, D.; Hinton, G.; and Williams, R., “Learning Internal Representations by Error Propagation,” Parallel Distributed Processing: Explorations in the Microstructures of Cognition, D. Rumelhart and J. McClelland, eds., 1986, pp. 318-362.

52. Mushgil, H. M.; Alani, H. A.; and George, L. E., “Comparison between Resilient and Standard Back Propagation Algorithms Efficiency in Pattern Recognition,” International Journal of Scientific and Engineering Research, V. 6, No. 3, 2015, pp. 773-778.

53. Prasad, N.; Singh, R.; and Lal, S. P., “Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification,” Proceedings of International Conference on Computational Intelligence, Modelling and Simulation, 2013, pp. 29-34. doi: 10.1109/CIMSim.2013.1410.1109/CIMSim.2013.14

54. R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria, 2018, www.r-project.org. (last accessed June 8, 2021)

55. Günther, F., and Fritsch, S., “neuralnet: Training of Neural Networks,” The R Journal, V. 2, No. 1, 2010, pp. 30-38. doi: 10.32614/RJ-2010-006

56. de Larrard, F., and Sedran, T., “Optimization of Ultra-High-Performance Concrete by the Use of a Packing Model,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 997-1009. doi: 10.1016/0008-8846(94)90022-1

57. de Larrard, F., “Concrete Mixture Proportioning: A Scientific Approach,” Modern Concrete Technology Series, E&FN Spon, London, UK, 1999.

58. de Larrard, F., and Sedran, T., “Mixture-Proportioning of High-Performance Concrete,” Cement and Concrete Research, V. 32, No. 11, 2002, pp. 1699-1704. doi: 10.1016/S0008-8846(02)00861-X

59. Moriasi, D. N.; Arnold, J. G.; Van Liew, M. W.; Bingner, R. L.; Harmel, R. D.; and Veith, T. L., “Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,” Transactions of the ASABE, V. 50, No. 3, 2007, pp. 885-900. doi: 10.13031/2013.23153

60. Srinivasulu, S., and Jain, A., “A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall–Runoff Models,” Applied Soft Computing, V. 6, No. 3, 2006, pp. 295-306. doi: 10.1016/j.asoc.2005.02.002

61. Gupta, S., “Using Artificial Neural Network to Predict the Compressive Strength of Concrete containing Nano-silica,” Civil Engineering and Architecture, V. 1, No. 3, 2013, pp. 96-102. doi: 10.13189/cea.2013.010306

62. Olden, J. D.; Joy, M. K.; and Death, R. G., “An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data,” Ecological Modelling, V. 178, No. 3-4, 2004, pp. 389-397. doi: 10.1016/j.ecolmodel.2004.03.013

63. Ghafari, E.; Costa, H.; and Júlio, E., “RSM-Based Model to Predict the Performance of Self-Compacting UHPC Reinforced with Hybrid Steel Micro-Fibers,” Construction and Building Materials, V. 66, 2014, pp.  375-383. doi: 10.1016/j.conbuildmat.2014.05.064

64. Abbas, S.; Nehdi, M. L.; and Saleem, M. A., “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges,” International Journal of Concrete Structures and Materials, V. 10, No. 3, 2016, pp. 271-295. doi: 10.1007/s40069-016-0157-4

65. Schmidt, C., and Schmidt, M., “‘Whitetopping’ of Asphalt and Concrete Pavements with Thin Layers of Ultra-High-Performance Concrete - Construction and Economic Efficiency,” 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, and S. Piotrowski, eds., Kassel University, Kassel, Germany, 2012.

66. Abellán, J.; Fernández, J.; Torres, N.; and Núñez, A., “Statistical Optimization of Ultra-High-Performance Glass Concrete,” ACI Materials Journal, V. 117, No. 1, Jan. 2020, pp. 243-254. doi: 10.14359/51720292


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer