Size Effect on Strength of Reinforced Concrete Cylinders Confined by Carbon Fiber-Reinforced Polymer and Transverse Stirrup Reinforcement

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Size Effect on Strength of Reinforced Concrete Cylinders Confined by Carbon Fiber-Reinforced Polymer and Transverse Stirrup Reinforcement

Author(s): Jikai Zhou, Yun Tian, Fengtong Bi, and Xiyao Zhao

Publication: Structural Journal

Volume: 118

Issue: 2

Appears on pages(s): 263-272

Keywords: bearing capacity; carbon fiber-reinforced polymer; reinforced concrete cylinders; size effect; transverse stirrup reinforcement

DOI: 10.14359/51729357

Date: 3/1/2021

Abstract:
The objective of this paper is to understand the influence of size effect on the bearing capacity of reinforced concrete (RC) cylinders confined by carbon fiber-reinforced polymer (CFRP) and transverse stirrup reinforcement (TSR). The uniaxial compression tests of CFRP-TSR-confined RC cylinders in different sizes (150, 190, and 240 mm [5.910, 7.486, and 9.456 in.]) under different confinements (CFRP sheets of one, two, and three layers, and TSR of 1.54% and 2.31% ratio) were conducted. From the test results, it can be found that the larger the diameter of RC cylinders, the more obvious the size effect of the bearing capacity, and the impact of CFRP on size effect is far higher than that of TSR. Without considering size effect, the uniaxial compression bearing capacity of the large-size specimens can be overestimated. Therefore, a compressive strength model and a bearing capacity design equation of CFRP-TSR-confined RC cylinders considering size effect are established.

Related References:

1. Weibull, W., “A Statistical Distribution Function of Wide Applicability,” Journal of Applied Mechanics, V. 13, 1951, pp. 293-297.

2. Bažant, Z. P., “Size Effect in Blunt Fracture: Concrete, Rock, Metal,” Journal of Engineering Mechanics, ASCE, V. 110, No. 4, 1984, pp. 518-535. doi: 10.1061/(ASCE)0733-9399(1984)110:4(518)

3. Carpinteri, A., and Yang, G. P., “Size Effects in Brittle Specimen with Microcrack Interaction,” Computers & Structures, V. 63, No. 3, 1997, pp. 429-437. doi: 10.1016/S0045-7949(96)00362-8

4. Lam, L., and Teng, J. G., “Design-Oriented Stress-Strain Model for FRP-Confined Concrete,” Construction and Building Materials, V. 17, No. 6-7, 2003, pp. 471-489. doi: 10.1016/S0950-0618(03)00045-X

5. Teng, J. G.; Jiang, T.; Lam, L.; and Luo, Y. Z., “Refinement of Lam and Teng’s Design-Oriented Stress-Strain Model for FRP-Confined Concrete,” IABSE Symposium Report, V. 92, No. 1, 2011, pp. 68-75.

6. Jiang, T., and Teng, J. G., “Analysis-Oriented Stress-Strain Models for FRP-Confined Concrete,” Engineering Structures, V. 29, No. 11, 2007, pp. 2968-2986. doi: 10.1016/j.engstruct.2007.01.010

7. Harries, K. A.; Peck, A. J.; and Abraham, E. J., “Enhancing Stability of Structural Steel Sections Using FRP,” Thin-Walled Structures, V. 47, No. 10, 2009, pp. 1092-1101. doi: 10.1016/j.tws.2008.10.007

8. Mohee, F. M., and Al-Mayah, A., “Effect of Barrel, Wedge Material and Thickness on Composite Plate Anchor Performance through Analytical, Finite Element, Experimental and 3D Prototype Investigations,” Engineering Structures, V. 175, 2018, pp. 138-154. doi: 10.1016/j.engstruct.2018.08.003

9. Mohee, F. M.; Al-Mayah, A.; and Plumtree, A., “Development of a Novel Prestressing Anchor for CFRP Plates: Experimental Investigations,” Composite Structures, V. 176, 2017, pp. 20-32. doi: 10.1016/j.compstruct.2017.05.011

10. Hollaway, L. C., and Cadei, J., “Progress in the Technique of Upgrading Metallic Structures with Advanced Polymer Composites,” Progress in Structural Engineering and Materials, V. 4, No. 2, 2002, pp. 131-148. doi: 10.1002/pse.112

11. Borri, A.; Corradi, M.; and Grazini, A., “A Method for Flexural Reinforcement of Old Wood Beams with CFRP Materials,” Composites. Part B, Engineering, V. 36, No. 2, 2005, pp. 143-153. doi: 10.1016/j.compositesb.2004.04.013

12. Fardis, M. N., and Khalili, H., “Concrete Encased in Fiberglass Reinforced Plastic,” ACI Journal Proceedings, V. 76, No. 6, Nov.-Dec. 1981, pp. 440-446.

13. Mirmiran, A.; Zagers, K.; and Yuan, W., “Nonlinear Finite Element Modeling of Concrete Confined by Fiber Composites,” Finite Elements in Analysis and Design, V. 35, No. 1, 2000, pp. 79-96. doi: 10.1016/S0168-874X(99)00056-6

14. Perera, R., “A Numerical Model to Study the Seismic Retrofit of RC Columns with Advances in Composite Jacketing,” Composites. Part B, Engineering, V. 37, No. 4-5, 2006, pp. 337-345. doi: 10.1016/j.compositesb.2005.11.001

15. Saadatmanesh, H.; Ehsani, M. R.; and Li, M. W., “Strength and Ductility of Concrete Columns Externally Reinforced with Fiber Composite Straps,” ACI Structural Journal, V. 91, No. 4, July-Aug. 1994, pp. 434-447.

16. Thériault, M.; Neale, K. W.; and Claude, S., “Fiber-Reinforced Polymer-Confined Circular Concrete Columns: Investigation of Size and Slenderness Effects,” Journal of Composites for Construction, ASCE, V. 8, No. 4, 2004, pp. 323-331. doi: 10.1061/(ASCE)1090-0268(2004)8:4(323)

17. Matthys, S.; Toutanji, H.; Audenaert, K.; and Taerwe, L., “Axial Load Behavior of Large-Scale Columns Confined with Fiber-Reinforced Polymer Composites,” ACI Structural Journal, V. 102, No. 2, Mar.-Apr. 2005, pp. 258-267.

18. Carey, S. A., and Harries, K. A., “Axial Behavior and Modeling of Confined Small-, Medium-, and Large-Scale Circular Sections with Carbon Fiber-Reinforced Polymer Jackets,” ACI Structural Journal, V. 102, No. 4, July-Aug. 2005, pp. 596-604.

19. Yeh, F. Y., and Chang, K. C., “Confinement Efficiency and Size Effect of FRP Confined Circular Concrete Columns,” Structural Engineering and Mechanics, V. 26, No. 2, 2007, pp. 127-150. doi: 10.12989/sem.2007.26.2.127

20. Akogbe, R. K.; Liang, M.; and Wu, Z. M., “Size Effect of Axial Compressive Strength of CFRP Confined Concrete Cylinders,” International Journal of Concrete Structures and Materials, V. 5, No. 1, 2011, pp. 49-55. doi: 10.4334/IJCSM.2011.5.1.049

21. Liang, M.; Wu, Z. M.; Ueda, T.; Zheng, J. J.; and Akogbe, R., “Experiment and Modeling on Axial Behavior of Carbon Fiber Reinforced Polymer Confined Concrete Cylinders with Different Sizes,” Journal of Reinforced Plastics and Composites, V. 31, No. 6, 2012, pp. 389-403. doi: 10.1177/0731684412439347

22. Samaan, M.; Mirmiran, A.; and Shahawy, M., “Model of Concrete Confined by Fiber Composites,” Journal of Structural Engineering, ASCE, V. 124, No. 9, 1998, pp. 1025-1031. doi: 10.1061/(ASCE)0733-9445(1998)124:9(1025)

23. Saafi, M.; Toutanji, H.; and Li, Z. J., “Behavior of Concrete Columns Confined with Fiber-Reinforced Polymer Tubes,” ACI Materials Journal, V. 96, No. 4, July-Aug. 1999, pp. 500-509.

24. Toutanji, H., “Stress-Strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composite Sheets,” ACI Structural Journal, V. 96, No. 3, May-June 1999, pp. 397-404.

25. Lam, L., and Teng, J. G., “Strength Models for Fiber-Reinforced Plastic-Confined Concrete,” Journal of Structural Engineering, ASCE, V. 128, No. 5, 2002, pp. 612-623. doi: 10.1061/(ASCE)0733-9445(2002)128:5(612)

26. Teng, J. G., and Lam, L., “Behavior and Modeling of Fiber Reinforced Polymer-Confined Concrete,” Journal of Structural Engineering, ASCE, V. 130, No. 11, 2004, pp. 1713-1723. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1713)

27. Wang, Y. F., and Wu, H. L., “Size Effect of Concrete Short Columns Confined with Aramid FRP Jackets,” Journal of Composites for Construction, ASCE, V. 15, No. 4, 2011, pp. 535-544. doi: 10.1061/(ASCE)CC.1943-5614.0000178

28. Zhou, J. K.; Bi, F. T.; Wang, Z. Q.; and Zhang, J., “Experimental Investigation of Size Effect on Mechanical Properties of Carbon Fiber Reinforced Polymer (CFRP) Confined Concrete Circular Specimens,” Construction and Building Materials, V. 127, 2016, pp. 643-652. doi: 10.1016/j.conbuildmat.2016.10.039

29. Mander, J. B.; Priestley, M. J. N.; and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, V. 114, No. 8, 1988, pp. 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)

30. Spoelstra, M. R., and Monti, G., “FRP-Confined Concrete Model,” Journal of Composites for Construction, ASCE, V. 3, No. 3, 1999, pp. 143-150. doi: 10.1061/(ASCE)1090-0268(1999)3:3(143)

31. Mortazavi, A. A.; Pilakoutas, K.; and Son, K. S., “RC Column Strengthening by Lateral Pre-Tensioning of FRP,” Construction and Building Materials, V. 17, No. 6-7, 2003, pp. 491-497. doi: 10.1016/S0950-0618(03)00046-1

32. Mirmiran, A.; Shahawy, M.; Samaan, M.; Echary, H. E.; Mastrapa, C. J.; and Pico, O., “Effect of Column Parameters on FRP-Confined Concrete,” Journal of Composites for Construction, ASCE, V. 2, No. 4, 1998, pp. 175-185. doi: 10.1061/(ASCE)1090-0268(1998)2:4(175)

33. El-Hacha, R., and Mashrik, M. A., “Effect of SFRP Confinement on Circular and Square Concrete Columns,” Engineering Structures, V. 36, 2012, pp. 379-393. doi: 10.1016/j.engstruct.2011.12.006

34. El-Hacha, R., and Abdelrahman, K., “Slenderness Effect of Circular Concrete Specimens Confined with SFRP Sheets,” Composites. Part B, Engineering, V. 44, No. 1, 2013, pp. 152-166. doi: 10.1016/j.compositesb.2012.06.014

35. Shahrooz, B. M.; Forry, M. L.; Anderson, N. S.; Bill, H. L.; and Doellman, A. M., “Continuous Transverse Reinforcement-Behavior and Design Implications,” ACI Structural Journal, V. 113, No. 5, Sept.-Oct. 2016, pp. 1085-1094. doi: 10.14359/51689154

36. Ahmad, S. H., and Shah, S. P., “Stress-Strain Curves of Concrete Confined by Spiral Reinforcement,” ACI Journal Proceedings, V. 79, No. 6, Nov.-Dec. 1982, pp. 484-490.

37. Hoshikuma, J.; Kawashima, K.; Nagaya, K.; and Taylor, W., “Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers,” Journal of Structural Engineering, ASCE, V. 123, No. 5, 1997, pp. 624-633. doi: 10.1061/(ASCE)0733-9445(1997)123:5(624)

38. Paultre, P.; Legeron, F.; and Mongeau, D., “Influence of Concrete Strength and Transverse Reinforcement Yield Strength on Behavior of High-Strength Concrete Columns,” ACI Structural Journal, V. 98, No. 4, July-Aug. 2001, pp. 490-501.

39. Jin, L.; Li, D.; Du, X. L.; Lu, A. Z.; and Ding, Z. X., “Experimental and Numerical Study on Size Effect in Eccentrically Loaded Stocky RC Columns,” Journal of Structural Engineering, ASCE, V. 143, No. 2, 2017, pp. 1-15. doi: 10.1061/(ASCE)ST.1943-541X.0001655

40. Matthys, S.; Toutanji, H.; and Taerwe, L., “Stress-Strain Behavior of Large-Scale Circular Columns Confined with FRP Composites,” Journal of Structural Engineering, ASCE, V. 132, No. 1, 2006, pp. 123-133. doi: 10.1061/(ASCE)0733-9445(2006)132:1(123)

41. Ilki, A.; Peker, O.; Karamuk, E.; Demir, C.; and Kumbasar, N., “FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns,” Journal of Materials in Civil Engineering, ASCE, V. 20, No. 2, 2008, pp. 169-188. doi: 10.1061/(ASCE)0899-1561(2008)20:2(169)

42. Eid, R.; Roy, N.; and Paultre, P., “Normal- and High-Strength Concrete Circular Elements Wrapped with FRP Composites,” Journal of Composites for Construction, ASCE, V. 13, No. 2, 2009, pp. 113-124. doi: 10.1061/(ASCE)1090-0268(2009)13:2(113)

43. Benzaid, R.; Mesbah, H.; and Chikh, E. N., “FRP-Confined Concrete Cylinders: Axial Compression Experiments and Strength Model,” Journal of Reinforced Plastics and Composites, V. 29, No. 16, 2010, pp. 2469-2488. doi: 10.1177/0731684409355199

44. Lee, J. Y.; Yi, C. K.; Jeong, H. S.; Kim, S. W.; and Kim, J. K., “Compressive Response of Concrete Confined with Steel Spirals and FRP Composites,” Journal of Composite Materials, V. 44, No. 4, 2010, pp. 481-504. doi: 10.1177/0021998309347568

45. Yin, P.; Huang, L.; Yan, L.; and Zhu, D., “Compressive Behavior of Concrete Confined by CFRP and Transverse Spiral Reinforcement. Part A: Experimental Study,” Materials and Structures/Materiaux et Constructions, V. 49, No. 3, 2016, pp. 1001-1011.

46. Li, Y. F., and Sung, Y. Y., “A Study on the Shear-Failure of Circular Sectioned Bridge Column Retrofitted by Using CFRP Jacketing,” Journal of Reinforced Plastics and Composites, V. 23, No. 8, 2004, pp. 811-830. doi: 10.1177/0731684404032865

47. Chastre, C., and Silva, M. A. G., “Monotonic Axial Behavior and Modelling of RC Circular Columns Confined with CFRP,” Engineering Structures, V. 32, No. 8, 2010, pp. 2268-2277. doi: 10.1016/j.engstruct.2010.04.001

48. Harajli, M. H., “Axial Stress–Strain Relationship for FRP Confined Circular and Rectangular Concrete Columns,” Cement and Concrete Composites, V. 28, No. 10, 2006, pp. 938-948. doi: 10.1016/j.cemconcomp.2006.07.005

49. Hu, H., and Seracino, R., “Analytical Model for FRP-and-Steel-Confined Circular Concrete Columns in Compression,” Journal of Composites for Construction, ASCE, V. 18, No. 3, 2014, pp. 1-7. doi: 10.1061/(ASCE)CC.1943-5614.0000394

50. Pellegrino, C., and Modena, C., “Analytical Model for FRP Confinement of Concrete Columns with and without Internal Steel Reinforcement,” Journal of Composites for Construction, ASCE, V. 14, No. 6, 2010, pp. 693-705. doi: 10.1061/(ASCE)CC.1943-5614.0000127

51. Issa, M. A.; Alrousan, R. Z.; and Issa, M. A., “Experimental and Parametric Study of Circular Short Columns Confined with CFRP Composites,” Journal of Composites for Construction, ASCE, V. 13, No. 2, 2009, pp. 135-147. doi: 10.1061/(ASCE)1090-0268(2009)13:2(135)

52. Taha, R., and Shrive, N., “New Concrete Anchors for Carbon Fiber-Reinforced Polymer Post-Tensioning Tendons—Part 1: State-of-the-Art Review / Design,” ACI Structural Journal, V. 100, No. 1, Jan.-Feb. 2003, pp. 86-95.

53. Taha, R., and Shrive, N., “New Concrete Anchors for Carbon Fiber-Reinforced Polymer Post-Tensioning Tendons—Part 2: Development / Experimental Investigation,” ACI Structural Journal, V. 100, No. 1, Jan.-Feb. 2003, pp. 96-104.

54. Mohee, F. M., and Al-Mayah, A., “Effect of Modulus of Elasticity and Thickness of the CFRP Plate on the Performance of a Novel Anchor for Structural Retrofitting and Rehabilitation Applications,” Engineering Structures, V. 153, 2017, pp. 302-316. doi: 10.1016/j.engstruct.2017.09.057


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer