Title:
Localization and Confinement Efficiency in Carbon Fiber-Reinforced Plastic-Confined Materials
Author(s):
Gebran N. Karam and Mazen R. Tabbara
Publication:
Structural Journal
Volume:
117
Issue:
6
Appears on pages(s):
7-15
Keywords:
carbon fiber-reinforced plastic (CFRP) wraps; confined concrete cylinders; confinement effectiveness; frictional-cohesive material; localization; Mohr-Coulomb; strain efficiency; stress-strain response
DOI:
10.14359/51728070
Date:
11/1/2020
Abstract:
An experimental and numerical investigation of stress-strain response, hoop strain variation, and localization of carbon fiber-reinforced composite (CFRP) confined cylinders of polypropylene and sand was carried out. The results were used to interpret the stress-strain response of CFRP-confined concrete and to clarify the failure mechanism of CFRP-wrapped concrete columns. It is shown that failure localization in the concrete core on discrete shear planes results in a failure mechanism that causes non-uniform hoop stresses along the height of the cylinders due to the movement of rigid wedges. Local hoop stress concentrations are shown to be the cause of fiber-reinforced plastic (FRP) premature failure. The numerical finite element model using a calibrated Mohr-Coulomb constitutive law successfully captured the experimental results. The stress-strain response of confined concrete is similar to that of a cohesive material until localization of failure, at which point the frictional response takes over. The confinement efficiency of FRP-wrapped concrete can be estimated using the proposed numerical approach instead of experimental calibrations.
Related References:
1. ACI Committee 440, “Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures (ACI 440.2R-17),” American Concrete Institute, Farmington Hills, MI, 2017, 112 pp.
2. CSA S806-12(R2017), “Design and Construction of Building Structures with Fibre-Reinforced Polymers,” Canadian Standards Association, Toronto, ON, Canada, 2017.
3. Teng, J. G.; Chen, J. F.; Smith, S. T.; and Lam, L., FRP: Strengthened RC Structures, Wiley, New York, 2002, 266 pp.
4. De Lorenzis, L., and Tepfers, R., “Comparative Study of Models on Confinement of Concrete Cylinders with Fiber-Reinforced Polymer Composites,” Journal of Composites for Construction, ASCE, V. 7, No. 3, 2003, pp. 219-237. doi: 10.1061/(ASCE)1090-0268(2003)7:3(219)
5. Lam, L., and Teng, J., “Design-Oriented Stress-Strain Model for FRP-Confined Concrete,” Construction and Building Materials, V. 17, No. 6-7, 2003a, pp. 471-489. doi: 10.1016/S0950-0618(03)00045-X
6. Tabbara, M. R., and Karam, G. N., “Modelling the Strength of Concrete Cylinders Confined with FRP Wraps Using the Hoek-Brown Strength Criterion,” Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, FRPRCS-8, University of Patras, Patras, Greece, July 16-18, 2007.
7. Lam, L., and Teng, J., “Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns,” Journal of Reinforced Plastics and Composites, V. 22, No. 13, 2003, pp. 1149-1186. doi: 10.1177/0731684403035429
8. Karbhari, V. M., and Gao, Y., “Composite Jacketed Concrete under Axial Compression- Verification of Simple Design Equations,” Journal of Materials in Civil Engineering, ASCE, V. 9, No. 4, 1997, pp. 185-193. doi: 10.1061/(ASCE)0899-1561(1997)9:4(185)
9. Mirmiran, A.; Shahawy, M.; Samaan, M.; El Echary, H.; Mastrapa, J. C.; and Pico, C., “Effect of Column Parameters on FRP-Confined Concrete,” Journal of Composites for Construction, ASCE, V. 2, No. 4, 1998, pp. 175-185. doi: 10.1061/(ASCE)1090-0268(1998)2:4(175)
10. Spoelstra, M. R., and Monti, G., “FRP Confined Concrete Model,” Journal of Composites for Construction, ASCE, V. 3, No. 3, 1999, pp. 143-150. doi: 10.1061/(ASCE)1090-0268(1999)3:3(143)
11. Xiao, Y., and Wu, H., “Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets,” Journal of Materials in Civil Engineering, ASCE, V. 12, No. 2, 2000, pp. 139-146. doi: 10.1061/(ASCE)0899-1561(2000)12:2(139)
12. Pessiki, S.; Harries, K. A.; Kestner, J.; Sause, R.; and Ricles, J. M., “Axial Behavior of Reinforced Concrete Confined with FRP Jackets,” Journal of Composites for Construction, ASCE, V. 5, No. 4, 2001, pp. 237-245. doi: 10.1061/(ASCE)1090-0268(2001)5:4(237)
13. Harries, K. A., and Carey, S. A., “Shape and ‘Gap’ Effects on the Behavior of Variably Confined Concrete,” Cement and Concrete Research, V. 33, No. 6, 2003, pp. 881-890. doi: 10.1016/S0008-8846(02)01085-2
14. Teng, J. G., and Lam, L., “Behavior and Modeling of Fiber Reinforced Polymer Confined Concrete,” Journal of Structural Engineering, ASCE, V. 130, No. 11, 2004, pp. 1713-1723. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1713)
15. Fujikake, K.; Mindess, S.; and Xu, H., “Analytical Model for Concrete Confined with Fiber Reinforced Polymer Composite,” Journal of Composites for Construction, ASCE, V. 8, No. 4, 2004, pp. 341-351. doi: 10.1061/(ASCE)1090-0268(2004)8:4(341)
16. Karam, G. N., and Tabbara, M., “Corner Effects in CFRP Wrapped Square Columns,” Magazine of Concrete Research, V. 56, No. 8, 2004, pp. 461-464. doi: 10.1680/macr.2004.56.8.461
17. Carey, S. A., and Harries, K. A., “Axial Behavior and Modeling of Small-, Medium-, and Large-Scale Circular Sections Confined with CFRP Jackets,” ACI Structural Journal, V. 102, No. 4, July-Aug. 2005, pp. 596-604.
18. Bisby, L.; Take, W. A.; and Caspary, A., “Quantifying Strain Variation in FRP Confined Concrete Using Digital Image Correlation: Proof-of-Concept and Initial Results,” Proceedings of the 1st Asia-Pacific Conference on FRP in Structures, Dept. of Civil Engineering, University of Hong Kong, Hong Kong, 2007, pp. 599-604.
19. Bisby, L. A., and Take, W. A., “Strain Localisations in FRP-Confined Concrete: New Insights,” Proceedings of the Institution of Civil Engineers. Structures and Buildings, V. 162, No. 5, 2009, pp. 301-309. doi: 10.1680/stbu.2009.162.5.301
20. Smith, S. T.; Kim, S. J.; and Zhang, H., “Behavior and Effectiveness of FRP Wrap in the Confinement of Large Concrete Cylinders,” Journal of Composites for Construction, ASCE, V. 14, No. 5, 2010, pp. 573-582. doi: 10.1061/(ASCE)CC.1943-5614.0000119
21. Abdelrahman, K., and El-Hacha, R., “Behavior of Large-Scale Concrete Columns Wrapped with CFRP and SFRP Sheets,” Journal of Composites for Construction, ASCE, V. 16, No. 4, 2012, pp. 430-439. doi: 10.1061/(ASCE)CC.1943-5614.0000278
22. Chen, J. F.; Li, S. Q.; and Bisby, L. A., “Factors Affecting the Ultimate Condition of FRP-Wrapped Concrete Columns,” Journal of Composites for Construction, ASCE, V. 17, No. 1, 2013, pp. 67-78. doi: 10.1061/(ASCE)CC.1943-5614.0000314
23. El-Hacha, R., and Abdelrahman, K., “Slenderness Effect of Circular Concrete Specimens Confined with SFRP Sheets,” Composites. Part B, Engineering, V. 44, No. 1, 2013, pp. 152-166. doi: 10.1016/j.compositesb.2012.06.014
24. Wu, Y. F., and Jiang, J. F., “Effective Strain of FRP for Confined Circular Concrete Columns,” Composite Structures, V. 95, 2013, pp. 479-491. doi: 10.1016/j.compstruct.2012.08.021
25. Salameh, N.; El-Hacha, R.; and Abdelrahman, K., “Evaluation of Axial and Lateral Strain Variation and Efficiency in CFRP-Confined Concrete Cylinders,” Proceedings of the 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & The 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015) Joint Conference, Dec. 14-16, 2015, Nanjing, China.
26. Lim, J. C., and Ozbakkaloglu, T., “Hoop Strains in FRP-Confined Concrete Columns: Experimental Observations,” Materials and Structures, V. 48, No. 9, 2015, pp. 2839-2854. doi: 10.1617/s11527-014-0358-8
27. Teng, J. G.; Wu, J. Y.; Casalboni, S.; Xiao, Q. G.; and Zhao, Y., “Behavior and Modeling of Fiber-Reinforced Polymer-Confined Concrete in Elliptical Columns,” Advances in Structural Engineering, V. 19, No. 9, 2016, pp. 1359-1378. doi: 10.1177/1369433216642122
28. Wei, Y., and Wu, Y. F., “Experimental Study of Concrete Columns with Localized Failure,” Journal of Composites for Construction, ASCE, V. 20, No. 5, 2016, p. 04016032 doi: 10.1061/(ASCE)CC.1943-5614.0000686
29. Tabbara, M., and Karam, G., “Numerical Investigation of Failure Localization and Stress Concentrations in FRP Wrapped Concrete Cylinders,” Proceedings of the 5th International Conference on Advanced Composite Materials in Bridges and Structures, ACBMS V, Winnipeg, MB, Canada, Sept. 22-24, 2008.
30. Marques, S. P. C.; Marques, D. C. D. S. C.; Lins da Silva, J.; and Cavalcante, M. A. A., “Model for Analysis of Short Columns of Concrete Confined by Fiber-Reinforced Polymer,” Journal of Composites for Construction, ASCE, V. 8, No. 4, 2004, pp. 332-340. doi: 10.1061/(ASCE)1090-0268(2004)8:4(332)
31. Malvar, L. J.; Morrill, K. B.; and Crawford, J. E., “Numerical Modeling of Concrete Confined by Fiber-Reinforced Composites,” Journal of Composites for Construction, ASCE, V. 8, No. 4, 2004, pp. 315-322. doi: 10.1061/(ASCE)1090-0268(2004)8:4(315)
32. Karabinis, A. I.; Rousakis, T. C.; and Manolitsi, G. E., “3D Finite-Element Analysis of Substandard RC Columns Strengthened by Fiber-Reinforced Polymer Sheets,” Journal of Composites for Construction, ASCE, V. 12, No. 5, 2008, pp. 531-540. doi: 10.1061/(ASCE)1090-0268(2008)12:5(531)
33. Wu, H. L.; Wang, Y. F.; Yu, L.; and Li, X. R., “Experimental and Computational Studies on High-Strength Concrete Circular Columns Confined by Aramid Fiber-Reinforced Polymer Sheets,” Journal of Composites for Construction, ASCE, V. 13, No. 2, 2009, pp. 125-134. doi: 10.1061/(ASCE)1090-0268(2009)13:2(125)
34. Yu, T.; Teng, J. G.; Wong, Y. L.; and Dong, S. L., “Finite Element Modeling of Confined Concrete-I: Drucker–Prager Type Plasticity Model,” Engineering Structures, V. 32, No. 3, 2010, pp. 665-679. doi: 10.1016/j.engstruct.2009.11.014
35. Galic, M.; Marovic, P.; and Nikolic, Z., “Modified Mohr-Coulomb–Rankine Material Model for Concrete,” Engineering Computations, V. 28, No. 7, 2011, pp. 853-887. doi: 10.1108/02644401111165112
36. Dandapat, R.; Deb, A.; and Bhattacharyya, S. K., “Localized Failure in Fiber-Reinforced Polymer-Wrapped Cylindrical Concrete Columns,” ACI Structural Journal, V. 109, No. 4, July-Aug. 2012, pp. 445-456.
37. Carrazedo, R.; Mirmiran, A.; and de Hanai, J. B., “Plasticity Based Stress–Strain Model for Concrete Confinement,” Engineering Structures, V. 48, 2013, pp. 645-657. doi: 10.1016/j.engstruct.2012.12.014
38. Tao, Z.; Wang, Z. B.; and Yu, Q., “Finite Element Modelling of Concrete-Filled Steel Stub Columns Under Axial Compression,” Journal of Constructional Steel Research, V. 89, 2013, pp. 121-131. doi: 10.1016/j.jcsr.2013.07.001
39. Youssf, O.; ElGawady, M. A.; Mills, J. E.; and Ma, X., “Finite Element Modelling and Dilation of FRP-Confined Concrete Columns,” Engineering Structures, V. 79, 2014, pp. 70-85. doi: 10.1016/j.engstruct.2014.07.045
40. Gambarelli, S.; Nisticò, N.; and Ožbolt, J., “Numerical Analysis of Compressed Concrete Columns Confined with CFRP: Microplane-Based Approach,” Composites. Part B, Engineering, V. 67, 2014, pp. 303-312. doi: 10.1016/j.compositesb.2014.06.026
41. Kwan, A. K. H.; Dong, C. X.; and Ho, J. C. M., “Axial and Lateral Stress–Strain Model for FRP Confined Concrete,” Engineering Structures, V. 99, 2015, pp. 285-295. doi: 10.1016/j.engstruct.2015.04.046
42. Mostofinejad, D.; Moshiri, N.; and Mortazavi, N., “Effect of Corner Radius and Aspect Ratio on Compressive Behavior of Rectangular Concrete Columns Confined with CFRP,” Materials and Structures, V. 48, No. 1-2, 2015, pp. 107-122. doi: 10.1617/s11527-013-0171-9
43. Lo, S. H.; Kwan, A. K. H.; Ouyang, Y.; and Ho, J. C. M., “Finite Element Analysis of Axially Loaded FRP-Confined Rectangular Concrete Columns,” Engineering Structures, V. 100, 2015, pp. 253-263. doi: 10.1016/j.engstruct.2015.06.010
44. Ozbakkaloglu, T.; Gholampour, A.; and Lim, J. C., “Damage-Plasticity Model for FRP-Confined Normal-Strength and High-Strength Concrete,” Journal of Composites for Construction, ASCE, V. 20, No. 6, 2016, p. 04016053. doi: 10.1061/(ASCE)CC.1943-5614.0000712
45. Hany, N. F.; Hantouche, E. G.; and Harajli, M. H., “Finite Element Modeling of FRP-Confined Concrete Using Modified Concrete Damaged Plasticity,” Engineering Structures, V. 125, 2016, pp. 1-14. doi: 10.1016/j.engstruct.2016.06.047
46. Lim, J. C.; Ozbakkaloglu, T.; Gholampour, A.; Bennett, T.; and Sadeghi, R., “Finite-Element Modeling of Actively Confined Normal-Strength and High-Strength Concrete under Uniaxial, Biaxial, and Triaxial Compression,” Journal of Structural Engineering, ASCE, V. 142, No. 11, 2016, p. 04016113. doi: 10.1061/(ASCE)ST.1943-541X.0001589
47. Farahmandpour, C.; Dartois, S.; Quiertant, M.; Berthaud, Y.; and Dumontet, H., “A Concrete Damage–Plasticity Model for FRP Confined Columns,” Materials and Structures, V. 50, No. 2, 2017, p. 156 doi: 10.1617/s11527-017-1016-8
48. Jamatia, R., and Deb, A., “Size Effect in FRP-Confined Concrete under Axial Compression,” Journal of Composites for Construction, ASCE, V. 21, No. 6, 2017, p. 04017045. doi: 10.1061/(ASCE)CC.1943-5614.0000825
49. Chellapandian, M.; Prakash, S. S.; and Rajagopal, A., “Analytical and Finite Element Studies on Hybrid FRP Strengthened RC Column Elements under Axial and Eccentric Compression,” Composite Structures, V. 184, 2018, pp. 234-248. doi: 10.1016/j.compstruct.2017.09.109
50. Sika, “Construction Data Book,” published by Sika Near East S.A.L. member of the Sika Group, Beirut, Lebanon, 2002.
51. ASTM C778-06, “Standard Specification for Standard Sand,” ASTM International, West Conshohocken, PA, 2006, 3 pp.
52. ASTM C39/C39M-18, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 2018, 8 pp.
53. PLAXIS V8, Plaxis by, Computerlaan 14, 2628 XK Delft, the Netherlands, http://www.plaxis.nl.
54. van Mier, J. G., “Mode II Fracture Localization in Concrete Loaded in Compression,” Journal of Engineering Mechanics, ASCE, V. 135, No. 1, 2009, pp. 1-8. doi: 10.1061/(ASCE)0733-9399(2009)135:1(1)
55. Moran, D. A., and Pantelides, C. P., “Elliptical and Circular FRP-Confined Concrete Sections: A Mohr–Coulomb Analytical Model,” International Journal of Solids and Structures, V. 49, No. 6, 2012, pp. 881-898. doi: 10.1016/j.ijsolstr.2011.12.012
56. Moran, D. A.; Pantelides, C. P.; and Reaveley, L. D., “Mohr-Coulomb Model for Rectangular and Square FRP-Confined Concrete,” Composite Structures, V. 209, 2019, pp. 889-904. doi: 10.1016/j.compstruct.2018.11.024
57. Ardiaca, D. H., “Mohr-Coulomb Parameters for Modelling of Concrete Structures,” Plaxis Bulletin, Spring 2009, http://www.plaxis.nl.
58. Bésuelle, P.; Desrues, J.; and Raynaud, S., “Experimental Characterisation of the Localisation Phenomenon inside a Vosges Sandstone in a Triaxial Cell,” International Journal of Rock Mechanics and Mining Sciences, V. 37, No. 8, 2000, pp. 1223-1237. doi: 10.1016/S1365-1609(00)00057-5
59. Iskander, M.; Omidvar, M.; and Bless, S., “Behavior of Granular Media Under High Strain-Rate Loading,” Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration, Elsevier Inc., 2015, pp. 11-63
60. Suescun-Florez, E.; Kashuk, S.; Iskander, M.; and Bless, S., “Predicting the Uniaxial Compressive Response of Granular Media over a Wide Range of Strain Rates Using the Strain Energy Density Concept,” Journal of Dynamic Behavior of Materials, V. 1, No. 3, 2015, pp. 330-346. doi: 10.1007/s40870-015-0028-0
61. Desrues, J., “Tracking Strain Localization in Geomaterials Using Computerized Tomography,” X-Ray CT for Geomaterials, 2004, pp. 15-41
62. Desrues, J., and Viggiani, G., “Strain Localization in Sand: An Overview of the Experimental Results Obtained in Grenoble Using Stereophotogrammetry,” International Journal for Numerical and Analytical Methods in Geomechanics, V. 28, No. 4, 2004, pp. 279-321. doi: 10.1002/nag.338
63. Desrues, J.; Bésuelle, P.; and Lewis, H., 2007, “Strain Localization in Geomaterials,” Geological Society, London, UK.
64. Alshibli, K. A.; Batiste, S. N.; and Sture, S., “Strain Localization in Sand: Plane Strain versus Triaxial Compression,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, V. 129, No. 6, 2003, pp. 483-494. doi: 10.1061/(ASCE)1090-0241(2003)129:6(483)
65. Ozbakkaloglu, T., and Lim, J. C., “Axial Compressive Behavior of FRP-Confined Concrete: Experimental Test Database and a New Design-Oriented Model,” Composites. Part B, Engineering, V. 55, 2013, pp. 607-634. doi: 10.1016/j.compositesb.2013.07.025