Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete

Author(s): J. Abellán-García, J. A. Fernández-Gómez, N. Torres-Castellanos, and A. M. Núñez-López

Publication: Materials Journal

Volume: 118

Issue: 1

Appears on pages(s): 127-138

Keywords: commercially available fibers; composite; direct tensile behavior; supplementary cementitious materials (SCM); ultra-highperformance fiber-reinforced concrete (UHPFRC)

DOI: 10.14359/51725992

Date: 1/1/2021

Abstract:
This paper investigates the tensile behavior of green ultra-high-performance fiber-reinforced concrete (UHPFRC) using commercially available steel fibers. An ecofriendly ultra-high-performance concrete (UHPC) with a low carbon footprint was developed, aiming for a compressive strength of 150 MPa (22 ksi) and a high packing density (0.81) while using recycled glass powder and micro-limestone powder as partial substitution of silica fume and ordinary portland cement. Besides the commercially available normal-strength deformed steel fibers, high-strength smooth steel fibers were used to establish a comparison. The study showed that, with appropriate hooked normal-strength and smooth high-strength steel fibers, 1% of fiber is enough to achieve strain hardening behavior. Moreover, the smooth fibers achieved the maximum tensile strength (σpc = 11.04 MPa) when 2% of volume was used. However, despite having less tensile strength, only the hooked-end fibers achieved a maximum post-cracking strain (εpc) of over 0.3% using 2% of volume.

Related References:

1. Abellán, J.; Fernández, J.; Torres, N.; and Núñez, A., “Statistical Optimization of Ultra-High-Performance Glass Concrete,” ACI Materials Journal, V. 117, No. 1, Jan. 2020, pp. 243-254. doi: 10.14359/51720292

2. Abellán-García, J.; Núñez-López, A.; Torres-Castellanos, N.; and Fernández-Gómez, J., “Effect of FC3R on the Properties of Ultra-High-Performance Concrete with Recycled Glass • Efecto del FC3R en las propiedades del concreto de ultra altas prestaciones con vidrio reciclado,” Dyna (Bilbao), V. 86, No. 211, 2019, pp. 84-92. doi: 10.15446/dyna.v86n211.79596

3. Abellan, J.; Torres, N.; Núñez, A.; and Fernández, J., “Ultra High Performance Fiber Reinforced Concrete: State of the Art, Applications and Possibilities Into the Latin American Market,” XXXVIII Jornadas Sudamericanas de Ingeniería Estructural, Lima, Peru, 2018.

4. Soliman, N. A., and Tagnit-Hamou, A., “Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap,” Construction and Building Materials, V. 139, 2017, pp. 374-383. doi: 10.1016/j.conbuildmat.2017.02.084

5. Martin-Sanz H, Chatzi E, Brühwiler E. “The Use of Ultra High Performance Fibre Reinforced Cement-Based Composites in Rehabilitation Projects: A Review,” 2016. doi:10.21012/fc9.21910.21012/fc9.219

6. Tagnit-Hamou, A.; Soliman, N. A.; and Omran, A., “Green Ultra-High-Performance Glass Concrete,” First International Interactive Symposium UHPC, V. 3, No. 1, 2016, pp. 1-10.

7. Richard, P., and Cheyrezy, M., “Composition of Reactive Powder Concretes,” Cement and Concrete Research, V. 25, No. 7, 1995, pp. 1501-1511. doi: 10.1016/0008-8846(95)00144-2

8. De Larrard, F., and Sedran, T., “Mixture-Proportioning of High-Performance Concrete,” Cement and Concrete Research, V. 32, No. 11, 2002, pp. 1699-1704. doi: 10.1016/S0008-8846(02)00861-X

9. Kou, S. C., and Xing, F., “The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of Fibre-Reinforced Ultrahigh Performance Concrete,” Advances in Materials Science and Engineering, May 2012. doi:10.1155/2012/26324310.1155/2012/263243

10. Soliman, N. A., and Tagnit-Hamou, A., “Using Glass Sand as an Alternative for Quartz Sand in UHPC,” Construction and Building Materials, V. 145, 2017, pp. 243-252. doi: 10.1016/j.conbuildmat.2017.03.187

11. Kalny, M.; Kvasnicka, V.; and Komanec, J., “First Practical Applications of UHPC in the Czech Republic,” E. Fehling, B. Middendorf, and J. Thiemicke, eds., Proceedings of Hipermat 2016 - 4th International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany; 2016, pp. 147-148.

12. Shaaban, M., and Ahmed, S., “Development of Ultra-High Performance Concrete Jointed Precast Decks and Concrete Piles in Integral Abutment Bridges.” The First International Symposium on Jointless & Sustainable Bridges. Fuzhou, Fujian, China, 2016, https://www.academia.edu/25363851/DEVELOPMENT_OF_ULTRA-HIGH_PERFORMANCE_CONCRETE_FOR_JOINTED_PRECAST_DECKS_AND_CONCRETE_PILES_IN_INTEGRAL_ABUTMENT_BRIDGES. (last accessed Jan. 25, 2021)

13. Haber, Z. B.; Munoz, J. F.; and Graybeal, B. A., “Field Testing of an Ultra-High Performance Concrete Overlay (No. FHWA-HRT-17-096),” 2017.

14. Acker, P., and Behloul, M., “Ductal Technology: a Large Spectrum of Properties, A Wide Range of Applications,” Fröhlich MSEFCGS, S. Piotrowski, ed., Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel University, Kassel, Germany, 2004, pp. 11-24.

15. Abellán, J.; Núñez, A.; and Arango, S., “Pedestrian Bridge of UNAL in Manizales : A New UPHFRC Application in the Colombian Building Market,” Proceedings of Hipermat 2020 - 5th International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2020, pp. 43-44.

16. Abellan, J.; Torres, N.; Núñez, A.; and Fernández, J., “Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones,” IV Congreso Internacional de Ingenieria Civil, Havana, Cuba, 2018.

17. Ferdosian, I.; Camões, A.; and Ribeiro, M., “High-Volume Fly Ash Paste for Developing Ultra-High Performance Concrete (UHPC),” Ciencia & Tecnologia dos Materiais, V. 29, No. 1, 2017, pp. e157-e161. doi:10.1016/j.ctmat.2016.10.00110.1016/j.ctmat.2016.10.001

18. Ghafari, E.; Costa, H.; and Júlio, E., “Statistical Mixture Design Approach for Eco-Efficient UHPC,” Cement and Concrete Composites, V. 55, Sept. 2015, pp. 17-25. doi: 10.1016/j.cemconcomp.2014.07.016

19. Abellán-García, J., “Four-Layer Perceptron Approach for Strength Prediction of UHPC,” Construction and Building Materials, V. 256, 2020, p. 119465 doi: 10.1016/j.conbuildmat.2020.119465

20. Abellán, J.; Fernández, J.; Torres, N.; and Núñez, A., “Development of Cost-Efficient UHPC with Local Materials in Colombia,” Proceedings of Hipermat 2020 - 5th International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2020, pp. 97-98.

21. Abellán-García, J.; Fernández-Gómez, J.; and Torres-Castellanos, N., “Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks,” European Journal of Environmental and Civil Engineering, V. 0, No. 0, 2020, pp. 1-25. doi: 10.1080/19648189.2020.1762749

22. Van Tuan, N.; Ye, G.; Van Breugel, K.; Fraaij, A. L. A.; and Danh, B., “The Study of Using Rice Husk Ash to Produce Ultra High Performance Concrete,” Construction and Building Materials, V. 25, No. 4, 2011, pp. 2030-2035. doi: 10.1016/j.conbuildmat.2010.11.046

23. Yu, R.; Tang, P.; Spiesz, P.; and Brouwers, H. J. H., “A Study of Multiple Effects of Nano-Silica and Hybrid Fibres on the Properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) Incorporating Waste Bottom Ash (WBA),” Construction and Building Materials, V. 60, June 2014, pp. 98-110. doi: 10.1016/j.conbuildmat.2014.02.059

24. Abbas, S.; Nehdi, M. L.; and Saleem, M. A., “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges,” International Journal of Concrete Structures and Materials, V. 10, No. 3, 2016, pp. 271-295. doi: 10.1007/s40069-016-0157-4

25. Wille, K.; Kim, D.; and Naaman, A. E., “Strain Hardening UHP-FRC with Low Fiber Contents,” Materials and Structures, V. 44, No. 3, 2011, pp. 538-598. doi: 10.1617/s11527-010-9650-4

26. Pyo, S.; El-Tawil, S.; and Naaman, A. E., “Direct Tensile Behavior of Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) at High Strain Rates,” Cement and Concrete Research, V. 88, 2016, pp. 144-156. doi: 10.1016/j.cemconres.2016.07.003

27. Naaman, A. E., and Reinhart, H. W., “Proposed Classification of HPFRC Composites Based on Their Tensile Response,” Materials and Structures, 2006, pp. 547-555.

28. Wille, K.; El-tawil, S.; and Naaman, A. E., “Properties of Strain Hardening Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) under Direct Tensile Loading,” Cement and Concrete Composites, V. 48, 2014, pp. 53-66. doi: 10.1016/j.cemconcomp.2013.12.015

29. de Larrard, F., and Sedran, T., “Optimization of Ultra-High-Performance Concrete by the Use of a Packing Model,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 997-1009. doi: 10.1016/0008-8846(94)90022-1

30. Lowke, D., and Stengel, T., “Control of Rheology, Strength and Fibre Bond of UHPC with Adittions—Effect of Packing Density and Addittion Type,” 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, 2012, pp. 215-224.

31. Kim, D.-J.; Naaman, A. E.; and El-Tawil, S., “High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardening Twisted Steel Fibers,” International Journal of Concrete Structures and Materials, V. 3, No. 2, 2009, pp. 119-126. doi: 10.4334/IJCSM.2009.3.2.119

32. Park, S. H.; Kim, D. J.; Ryu, G. S.; and Koh, K. T., “Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete,” Cement and Concrete Composites, V. 34, No. 2, 2012, pp. 172-184. doi: 10.1016/j.cemconcomp.2011.09.009

33. Funk, J. E., and Dinger, D. R., Predictive Process Control of Crowded Particulate Suspensions. Applied to Ceramic Manufacturing, Springer Science, New York, 1994. doi:10.1007/978-1-4615-3118-010.1007/978-1-4615-3118-0

34. Abellan-Garcia, J., and Santofimo-Vargas, M. A., “Analysis of Metakaolin as Partial Substitution of Ordinary Portland Cement in Reactive Powder Concrete,” Advances in Civil Engineering Materials, V. 9, No. 1, 2020.

35. Yokota, H.; Rokugo, K.; and Sakata, N., “Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC),” JSCE-2008, 2008. doi:http://dx.doi.org/10.1016/j.dci.2010.01.00310.1016/j.dci.2010.01.003

36. Ryu, G. S.; Kim, S. H.; Ahn, G. H.; and Koh, K. T., “Evaluation of the Direct Tensile Behavioral Characteristics of UHPC Using Twisted Steel Fibers,” Advanced Material Research, 2012. doi:10.4028/www.scientific.net/amr.602-604.96

37. Yoo, D. Y., and Kim, M. J., “High Energy Absorbent Ultra-High-Performance Concrete with Hybrid Steel and Polyethylene Fibers,” Construction and Building Materials, V. 209, 2019, pp. 354-363. doi: 10.1016/j.conbuildmat.2019.03.096


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer