Simplified Approaches for Estimating Yield Rotation of Reinforced Concrete Beam-Column Components

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Simplified Approaches for Estimating Yield Rotation of Reinforced Concrete Beam-Column Components

Author(s): Eyitayo A. Opabola and Kenneth J. Elwood

Publication: Structural Journal

Volume: 117

Issue: 4

Appears on pages(s): 279-289

Keywords: assessment; deformation components; design; effective stiffness; reinforced concrete (RC) columns; RC coupling beams; yield rotation

DOI: 10.14359/51724667

Date: 7/1/2020

Abstract:
Recent research studies have shown that provisions of current seismic assessment and design standards overestimate the effective stiffness of reinforced concrete (RC) components. The influence of slip and shear deformations on the elastic response of RC components is not adequately addressed by these provisions. This paper presents a methodology for estimating the yield rotation and effective stiffness of RC components. Based on first principles, a simple analytical approach accounting for the effect of bar slip and shear deformations is presented. Using a dataset of past experiments on RC columns, the adequacy of the simplified model is demonstrated. The approach is extended to RC components with high-strength steel. Furthermore, recommendations on effective stiffness of RC coupling beams are provided.

Related References:

1. ASCE, “Seismic Evaluation and Retrofit of Existing Buildings: ASCE Standard ASCE/SEI 41-13,” American Society of Civil Engineers, Reston, VA, 2018.

2. Standards New Zealand, “NZS 3101:2006:A3 - Concrete Structures Standard,” Wellington, NZ, 2006, pp. 1-698.

3. Kusunoki, K.; Hinata, D.; Hattori, Y.; and Tasai, A., “A New Method For Evaluating The Real-time Residual Seismic Capacity of Existing Structures Using Accelerometers: Structures With Multiple Degrees of Freedom,” Japan Architectural Review, V. 1, No. 1, 2018, pp. 77-86. doi: 10.1002/2475-8876.1010

4. Kwon, J., and Ghannoum, W. M., “Assessment of International Standard Provisions on Stiffness of Reinforced Concrete Moment Frame and Shear Wall Buildings,” Engineering Structures, V. 128, 2016, pp. 149-160. doi: 10.1016/j.engstruct.2016.09.025

5. Berry, M.; Parrish, M.; and Eberhard, M., “PEER Structural Performance Database User’s Manual,” v1.0, 2004, p. 38.

6. Panagiotakos, T. B., and Fardis, M. N., “Deformations of Reinforced Concrete Members at Yielding and Ultimate,” ACI Structural Journal, V. 98, No. 2, Mar.-Apr. 2001, pp. 135-147.

7. CEN, “European Standard EN 1998-3:2005. Eurocode 8: Design of Structures for Earthquake Resistance - Part 3: Assessment and Retrofitting of Buildings. Incorporating Corrigendum March 2010,” European Committee for Standardization, Brussels, Belgium, 2005.

8. Fédération internationale du béton, “fib Model Code for Concrete Structures 2010,” Ernst & Sohn, 2013, 428 pp.

9. Priestley, M. J. N.; Seible, F.; and Calvi, G. M., Seismic Design and Retrofit of Bridges, John Wiley & Sons, Inc., New York, 1996.

10. Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley & Sons, Inc., New York, 1975, 388 pp.

11. Elwood, K. J., and Eberhard, M. O., “Effective Stiffness of Reinforced Concrete Columns,” ACI Structural Journal, V. 106, No. 4, July-Aug. 2009, pp. 476-484.

12. Sezen, H., and Setzler, E. J., “Reinforcement Slip in Reinforced Concrete Columns,” ACI Structural Journal, V. 105, No. 3, May-June 2008, pp. 280-289.

13. Ghannoum, W.; Sivaramakrishnan, B.; Pujol, S.; Catlin, A. C.; Fernando, S.; Yoosuf, N.; and Wang, Y., “NEES: ACI 369 Rectangular Column Database,” https://datacenterhub.org/resources/255. (last accessed May 29, 2020)

14. Berry, M., and Eberhard, M., “Performance Models for Flexural Damage in Reinforced Concrete Columns,” Pacific Earthquake Engineering Research Center, Berkeley, CA, 2003, 156 pp.

15. Sivaramakrishnan, B., “Non-linear Modeling Parameters for Reinforced Concrete Columns Subjected to Seismic Loads,” master’s thesis, The University of Texas at Austin, Austin, TX, 2010.

16. Opabola, E. A.; Elwood, K. J.; and Oliver, S., “Deformation Capacity of Reinforced Concrete Columns with Smooth Reinforcement,” Bulletin of Earthquake Engineering, V. 17, No. 5, 2019, pp. 2509-2532. doi: 10.1007/s10518-018-00540-w

17. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 519 pp.

18. Rautenberg, J. M.; Pujol, S.; Tavallali, H.; and Lepage, A., “Drift Capacity of Concrete Columns Reinforced with High-Strength Steel,” ACI Structural Journal, V. 110, No. 2, Mar.-Apr. 2013, pp. 307-317.

19. Elwood, K. J.; Matamoros, A. B.; Wallace, J. W.; Lehman, D. E.; Heintz, J. A.; Mitchell, A. D.; Moore, M. A.; Valley, M. T.; Lowes, L. N.; Comartin, C. D.; and Moehle, J. P., “Update to ASCE/SEI 41 Concrete Provisions,” Earthquake Spectra, V. 23, No. 3, 2007, pp. 493-523. doi: 10.1193/1.2757714

20. Priestley, M. J. N., and Kowalsky, M. J., “Aspects of Drift and Ductility Capacity of Rectangular Cantiliver Structural Walls,” Bulletin of the New Zealand National Society for Earthquake Engineering, V. 31, No. 2, 1998, pp. 73-85. doi: 10.5459/bnzsee.31.2.73-85

21. Cheng, M. Y., and Giduquio, M. B., “Cyclic Behavior of Reinforced Concrete Flexural Members Using High-Strength Flexural Reinforcement,” ACI Structural Journal, V. 111, No. 4, July-Aug. 2014, pp. 893-902. doi: 10.14359/51686632

22. Tavallali, H.; Lepage, A.; Rautenberg, J. M.; and Pujol, S., “Concrete Beams Reinforced with High-Strength Steel Subjected to Displacement Reversals,” ACI Structural Journal, V. 111, No. 5, Sept.-Oct. 2014, doi: 10.14359/51686967

23. Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, New York, 1992, 765 pp.

24. Paulay, T., “The Displacement Capacity of Reinforced Concrete Coupled Walls,” Engineering Structures, V. 24, No. 9, 2002, pp. 1165-1175. doi: 10.1016/S0141-0296(02)00050-0

25. ASCE, “Seismic Evaluation and Retrofit of Existing Buildings, Standard ASCE/SEI 41-17,” 2017, 550 pp.

26. Tassios, T. P.; Moretti, M.; and Bezas, A., “On the Behavior and Ductility of Reinforced Concrete Coupling Beams of Shear Walls,” ACI Structural Journal, V. 93, No. 6, Nov.-Dec. 1996, pp. 711-720.

27. Galano, L., and Vignoli, A., “Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts,” ACI Structural Journal, V. 98, No. 5, Sept.-Oct. 2001, pp. 786-788.

28. Ihtiyar, O., and Breña, S. F., “Assessment of FEMA 356 Techniques for Orthogonally Reinforced Coupling Beams through Experimental Testing,” Research Frontiers at Structures Congress 2007, Long Beach, CA, May 16-19, 2007, pp. 1-16. doi: 10.1061/40944(249)77

29. Hong, S.-G., and Jang, S.-K., “The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams,” Journal of the Earthquake Engineering Society of Korea, V. 10, No. 3, 2006, pp. 113-123. doi: 10.5000/EESK.2006.10.3.113

30. Bristowe, S., “Seismic Response of Normal and High Strength Concrete Members,” PhD thesis, McGill University, Montreal, QC, Canada, 2006.

31. Barney, G. B.; Shiu, K. N.; Rabbat, B. G.; Fiorato, A. E.; Russell, H. G.; and Corley, W. G., “Behavior of Coupling Beams Under Load Reversals,” Portland Cement Association, Skokie, IL, 1980, pp. 1-22.

32. Naish, D.; Fry, A.; and Klemencic, R., “Reinforced Concrete Coupling Beams—Part I : Testing,” ACI Structural Journal, V. 110, No. 6, Nov.-Dec. 2013, pp. 1067-1075.

33. Kwan, A. K. H., and Zhao, Z. Z., “Testing of Coupling Beams with Equal End Rotations Maintained and Local Joint Deformation Allowed,” Proceedings of the ICE - Structures and Buildings, V. 152, No. 1, 2002, pp. 67-78.

34. Kwan, A. K. H., and Zhao, Z. Z., “Cyclic Behaviour of Deep Reinforced Concrete Coupling Beams,” Proceedings of the Institution of Civil Engineers. Structures and Buildings, V. 152, No. 3, 2002, pp. 283-293. doi: 10.1680/stbu.2002.152.3.283

35. Lim, E.; Hwang, S. J.; Wang, T. W.; and Chang, Y.-H., “An Investigation on the Seismic Behavior of Deep Reinforced Concrete Coupling Beams,” ACI Structural Journal, V. 113, No. 2, Mar.-Apr. 2016, pp. 1-10. doi: 10.14359/51687939

36. Fisher, A. W.; Bentz, E. C.; and Collins, M. P., “Response of Heavily Reinforced High-Strength Concrete Coupling Beams,” ACI Structural Journal, V. 114, No. 6, Nov.-Dec. 2017, pp. 1483-1494. doi: 10.14359/51689501

37. Kim, S.-W.; Jang, S.-J.; Yun, H.-D.; Seo, S.-Y.; and Chun, Y.-S., “Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars,” Journal of the Korea Concrete Institute, V. 29, No. 1, 2017, pp. 43-51. doi: 10.4334/JKCI.2017.29.1.043

38. Liang, X.; Li, F.; Zhang, T.; and Deng, M., “Experimental Study on Seismic Behaviour of New Reinforcement Scheme Deep Coupling Beams,” Engineering Mechanics, V. 26, No. 12, 2009, pp. 119-126.

39. Paulay, T., “The Coupling of Shear Walls,” University of Canterbury, Christchurch, New Zealand, 1969.

40. Tassios, T. P.; Moretti, M.; and Bezas, A., “On the Behavior and Ductility of Reinforced Concrete Coupling Beams of Shear Walls,” ACI Structural Journal, V. 93, No. 6, Nov.-Dec. 1996, pp. 711-720.

41. Galano, L., and Vignoli, A., “Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts,” ACI Structural Journal, V. 98, No. 5, Sept.-Oct. 2001, pp. 786-788.

42. Paulay, T., and Binney, J. R., “Diagonally Reinforced Coupling Beams of Shear Walls,” Shear in Reinforced Concrete—Volume 1 and 2, SP-42, American Concrete Institute, Farmington Hills, MI, 1974, pp. 579-598.

43. Shimazaki, K., “De-Bonded Diagonally Reinforced Beam for Good Repairability,” 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 2004, pp. 1-14.

44. Ishikawa, Y., and Kimura, H., “Experimental Study on Seismic Behavior of R/C Diagonally Reinforced Short Beams,” Proceedings of the 11th World Conference on Earthquake Engineering, 1996.

45. Canbolat, B. A.; Parra-Montesinos, G. J.; and Wight, J. K., “Experimental Study on Seismic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beams,” ACI Structural Journal, V. 102, No. 1, Jan.-Feb. 2005, pp. 159-166.

46. Han, S. W.; Lee, C. S.; Han, C. H.; and Moon, K. H., “Cyclic Behaviour of Slender Diagonally Reinforced Coupling Beams With Various Amounts of Transverse Reinforcement,” Magazine of Concrete Research, V. 70, No. 13, 2018, pp. 671-684. doi: 10.1680/jmacr.16.00429

47. Lim, E.; Hwang, S. J.; Wang, T. W.; and Chang, Y.-H., “An Investigation on the Seismic Behavior of Deep Reinforced Concrete Coupling Beams,” ACI Structural Journal, V. 113, No. 2, Mar.-Apr. 2016, pp. 1-10. doi: 10.14359/51687939

48. Fortney, P. J.; Rassati, G. A.; and Shahrooz, B. M., “Investigation on Effect of Transverse Reinforcement on Performance of Diagonally Reinforced Coupling Beams,” ACI Structural Journal, V. 105, No. 6, Nov.-Dec. 2008, pp. 781-788.

49. Kwan, A. K. H., and Zhao, Z. Z., “Cyclic Behaviour of Deep Reinforced Concrete Coupling Beams,” Proceedings of the Institution of Civil Engineers. Structures and Buildings, V. 152, No. 3, 2002, pp. 283-293. doi: 10.1680/stbu.2002.152.3.283

50. Lequesne, R.; Setkit, M.; Parra-Montesinos, G. J.; and Wight, J. K., “Seismic Detailing and Behaviour of Coupling Beams with High-Performance Fiber-Reinforced Concrete,” Antoine E. Naaman Symposium: Four Decades of Progress in Prestressed Concrete, Fiber Reinforced Concrete and Thin Laminate Composites, SP-272, American Concrete Institute, Farmington Hills, MI, 14 pp.

51. Yun, H.-D.; Kim, S.-W.; Jeon, E.; Park, W.-S.; and Lee, Y.-T., “Effects of Fibre-Reinforced Cement Composites’ Ductility on the Seismic Performance of Short Coupling Beams,” Magazine of Concrete Research, V. 60, No. 3, 2008, pp. 223-233. doi: 10.1680/macr.2007.00081

52. Tavallali, H.; Lepage, A.; Rautenberg, J. M.; and Pujol, S., “Concrete Beams Reinforced with High-Strength Steel Subjected to Displacement Reversals,” ACI Structural Journal, V. 111, No. 5, Sept.-Oct. 2014, doi: 10.14359/51686967

53. Sokoli, D., and Ghannoum, W. M., “High-Strength Reinforcement in Columns under High Shear Stresses,” ACI Structural Journal, V. 113, No. 3, May-June 2016, pp. 605-614.

54. Restrepo, J. I.; Seible, F.; Stephan, B.; and Schoettler, M. J., “Seismic Testing of Bridge Columns Incorporating High-Performance Materials,” ACI Structural Journal, V. 103, No. 4, July-Aug. 2006, pp. 496-504.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer