Title:
Effects of Temperature and Salinity on Concrete-Surface Treatment by Bacteria in Marine Environment
Author(s):
Hayeon Kim, H. M. Son, Solmoi Park, Joonho Seo, and H. K. Lee
Publication:
Materials Journal
Volume:
117
Issue:
4
Appears on pages(s):
57-65
Keywords:
concrete-surface treatment by microbial-induced calcium carbonate precipitation; marine concrete; salinity; Sporosarcina pasteurii; temperature
DOI:
10.14359/51724615
Date:
7/1/2020
Abstract:
The present study investigated the effects of temperature and salinity on CaCO3 production metabolism by soil bacteria. S. pasteurii was incubated in a urea-calcium lactate medium with the variables of salinity (0.5, 2, and 3.5%) at 10, 20, and 30°C. The effects of temperature and salinity on the growth, activity of urea hydrolysis, and CaCO3 production were determined by comparing the growth rate and the changes in concentration of the NH4 + and
Ca2+. The effects of temperature and salinity on concrete surface treatment by S. pasteurii were conducted by water absorption test. The CaCO3 precipitation metabolism of S. pasteurii was predominantly affected by temperature, while there was no significant difference in the metabolic capacity in terms of salinity. The water absorption rate of surface-treated concrete reduced with increasing temperature and salinity.
Related References:
1. De Muynck, W.; De Belie, N.; and Verstraete, W., “Microbial Carbonate Precipitation in Construction Materials: A Review,” Ecological Engineering, V. 36, No. 2, 2010, pp. 118-136. doi: 10.1016/j.ecoleng.2009.02.006
2. Phillips, A. J.; Gerlach, R.; Lauchnor, E.; Mitchell, A. C.; Cunningham, A. B.; and Spangler, L., “Engineered Applications of Ureolytic Biomineralization: A Review,” Biofouling, V. 29, No. 6, 2013, pp. 715-733. doi: 10.1080/08927014.2013.796550
3. Basaran Bundur, Z.; Kirisits, M. J.; and Ferron, R. D., “Biomineralized Cement-Based Materials: Impact of Inoculating Vegetative Bacterial Cells on Hydration and Strength,” Cement and Concrete Research, V. 67, No. 201, 2014, pp. 237-245.
4. Wang, J.; Mignon, A.; Trenson, G.; Van Vlierberghe, S.; Boon, N.; and De Belie, N., “A Chitosan Based pH-responsive Hydrogel for Encapsulation of Bacteria for Self-sealing Concrete,” Cement and Concrete Composites, V. 93, 2018, pp. 309-322. doi: 10.1016/j.cemconcomp.2018.08.007
5. Santhosh, V. R.; Ramachandran, K.; and Sookie, S. B., “Remediation of Concrete Using Microorganisms,” ACI Materials Journal, V. 98, No. 1, Jan.-Feb. 2001, pp. 3-9.
6. Wei, S.; Cui, H.; Jiang, Z.; Liu, H.; He, H.; and Fang, N., “Biomineralization Processes of Calcite Induced by Bacteria Isolated from Marine Sediments,” Brazilian Journal of Microbiology, V. 46, No. 2, 2015, pp. 455-464. doi: 10.1590/S1517-838246220140533
7. Anbu, P.; Kang, C.-H.; Shin, Y.-J.; and So, J.-S., “Formations of Calcium Carbonate Minerals by Bacteria and its Multiple Applications,” SpringerPlus, V. 5, No. 1, 2016, p. 250 doi: 10.1186/s40064-016-1869-2
8. Van Tittelboom, K.; De Belie, N.; De Muynck, W.; and Verstraete, W., “Use of Bacteria to Repair Cracks in Concrete,” Cement and Concrete Research, V. 40, No. 1, 2010, pp. 157-166. doi: 10.1016/j.cemconres.2009.08.025
9. Snoeck, D.; Wang, J.; Bentz, D. P.; and De Belie, N., “Applying a Biodeposition Layer to Increase the Bond of a Repair Mortar on a Mortar Substrate,” Cement and Concrete Composites, V. 86, 2018, pp. 30-39. doi: 10.1016/j.cemconcomp.2017.11.001
10. De Muynck, W.; Debrouwer, D.; De Belie, N.; and Verstraete, W., “Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials,” Cement and Concrete Research, V. 38, No. 7, 2008, pp. 1005-1014. doi: 10.1016/j.cemconres.2008.03.005
11. Choi, S.-G.; Wang, K.; Wen, Z.; and Chu, J., “Mortar Crack Repair Using Microbial Induced Calcite Precipitation Method,” Cement and Concrete Composites, V. 83, 2017, pp. 209-221. doi: 10.1016/j.cemconcomp.2017.07.013
12. Rosso, L.; Lobry, J. R.; Bajard, S.; and Flandrois, J. P., “Convenient Model to Describe the Combined Effects of Temperature and pH on Microbial Growth,” Applied and Environmental Microbiology, V. 61, No. 2, 1995, pp. 610-616. doi: 10.1128/AEM.61.2.610-616.1995
13. Ehrlich, H. L., and Newman, D. K., Geomicrobiology, fifth edition, CRC Press, Boca Raton, FL, 2008.
14. Polder, R. B., and de Rooij, M. R., “Durability of Marine Concrete Structures-field Investigations and Modelling,” Heron, V. 50, No. 3, 2005, pp. 133-153.
15. Kadam, M. H. P.; Desai, D. B.; and Gupta, A. K., “A Review Paper on Deterioration of Concrete in Marine Structures,” Imperial Journal of Interdisciplinary Research, V. 3, No. 2, 2017, pp. 1304-1306.
16. Tian, B., and Cohen, M. D., “Does Gypsum Formation during Sulfate Attack on Concrete Lead to Expansion?” Cement and Concrete Research, V. 30, No. 1, 2000, pp. 117-123. doi: 10.1016/S0008-8846(99)00211-2
17. Mehta, P. K., “Mechanism of Sulfate Attack on Portland Cement Concrete — Another Look,” Cement and Concrete Research, V. 13, No. 3, 1983, pp. 401-406. doi: 10.1016/0008-8846(83)90040-6
18. Yoon, H. N.; Park, S. M.; and Lee, H. K., “Effect of MgO on Chloride Penetration Resistance of Alkali-activated Binder,” Construction and Building Materials, V. 178, 2018, pp. 584-592. doi: 10.1016/j.conbuildmat.2018.05.156
19. Page, C. L., “Mechanism of Corrosion Protection in Reinforced Concrete Marine Tructures,” Nature, V. 258, No. 5535, 1975, pp. 514-515. doi: 10.1038/258514a0
20. Vijaya, G. S.; Ghorpade, V. G.; and Rao, H. S., “The Behaviour of Self-Compacting Concrete with Waste Plastic Fibers when Subjected to Chloride Attack,” Materials Today: Proceedings, V. 5, No. 1, 2018, pp. 1501-1508. doi: 10.1016/j.matpr.2017.11.239
21. Lee, N. K., and Lee, H. K., “Influence of the Slag Content on the Chloride and Sulfuric Acid Resistances of Alkali-Activated Fly Ash/Slag Paste,” Cement and Concrete Composites, V. 72, 2016, pp. 168-179. doi: 10.1016/j.cemconcomp.2016.06.004
22. Bansal, R.; Dhami, N. K.; Mukherjee, A.; and Reddy, M. S., “Biocalcification by Halophilic Bacteria for Remediation of Concrete Structures in Marine Environment,” Journal of Industrial Microbiology & Biotechnology, V. 43, No. 11, 2016, pp. 1497-1505. doi: 10.1007/s10295-016-1835-6
23. Rivadeneyra, M.-A.; Delgado, G.; Soriano, M.; Ramos-Cormenzana, A.; and Delgado, R., “Biomineralization of Carbonates by Marinococcus Albus and Marinococcus Halophilus Isolated from the Salar de Atacama (Chile),” Current Microbiology, V. 39, No. 1, 1999, pp. 53-57. doi: 10.1007/PL00006827
24. MarineBio, “Ocean & Temperature”, MarineBio Conservation Society, https://marinebio.org/oceans/temperature/2019.
25. “Ocean Salinity: Vertical & Horizontal Distribution of Ocean Salinity,” Geography PMFLAS, https://www.pmfias.com/ocean-salinity-vertical-horizontal-distribution/, 2016.
26. ASTM C1585/C1583M-13, “Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes,” ASTM International, West Conshohocken, PA, 2013, 4 pp.
27. ASTM C1202-19, “Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration,” ASTM International, West Conshohocken, PA, 2019, 8 pp.
28. Son, H. M.; Kim, H. Y.; Park, S. M.; and Lee, H. K., “Ureolytic/Non-Ureolytic Bacteria Co-cultured Self-healing Agent for Cementitious Materials Crack Repair,” Materials (Basel), V. 11, No. 5, 2018, p. 782. doi: 10.3390/ma11050782
29. Mahler, L.; Tovar, M.; Weber, T.; Brandes, S.; Rudolph, M. M.; Ehgartner, J.; Mayr, T.; Figge, M. T.; Roth, M.; and Zang, E., “Enhanced and Homogeneous Oxygen Availability during Incubation of Microfluidic Droplets,” RSC Advances, V. 5, No. 123, 2015, 101871-101878. doi: 10.1039/C5RA20118G
30. Stanley, S. O., and Morita, R. Y., “Salinity Effect on the Maximal Growth Temperature of Some Bacteria Isolated from Marine Environments,” Journal of Bacteriology, V. 95, No. 1, 1968, pp. 169-173. doi: 10.1128/JB.95.1.169-173.1968
31. Ferrer, M. R.; Quevedo-Sarmiento, J.; Rivadeneyra, M. A.; Bejar, V.; Delgado, R.; and Ramos-Cormenzana, A., “Calcium Carbonate Precipitation by Two Groups of Moderately Halophilic Microorganisms at Different Temperatures and Salt Concentrations,” Current Microbiology, V. 17, No. 4, 1988, pp. 221-227. doi: 10.1007/BF01589456
32. Mortensen, B. M.; Haber, M. J.; DeJong, J. T.; Caslake, L. F.; and Nelson, D. C., “Effects of Environmental Factors on Microbial Induced Calcium Carbonate Precipitation,” Journal of Applied Microbiology, V. 111, No. 2, 2011, pp. 338-349. doi: 10.1111/j.1365-2672.2011.05065.x
33. Siddique, R., and Chahal, N. K., “Effect of Ureolytic Bacteria on Concrete Properties,” Construction and Building Materials, V. 25, No. 10, 2011, pp. 3791-3801. doi: 10.1016/j.conbuildmat.2011.04.010
34. DeJong, J. T.; Mortensen, B. M.; Martinez, B. C.; and Nelson, D. C., “Bio-Mediated Soil Improvement,” Ecological Engineering, V. 36, No. 2, 2010, pp. 197-210. doi: 10.1016/j.ecoleng.2008.12.029
35. Mitchell, A. C., and Ferris, F. G., “The Influence of Bacillus Pasteurii on the Nucleation and Growth of Calcium Carbonate,” Geomicrobiology Journal, V. 23, No. 3-4, 2006, pp. 213-226. doi: 10.1080/01490450600724233
36. Kim, H. Y.; Son, H. M.; Park, S. M.; and Lee, H. K., “Effects of Biological Admixtures on Hydration and Mechanical Properties of Portland Cement Paste,” Construction and Building Materials, V. 235, 2020, p. 117461. doi: 10.1016/j.conbuildmat.2019.117461
37. Rivadeneyra, M. A.; Delgado, R.; Quesada, E.; and Ramos-Cormenzana, A., “Precipitation of Calcium Carbonate by Deleya Halophila in Media Containing NaCl as Sole Salt,” Current Microbiology, V. 22, No. 3, 1991, pp. 185-190. doi: 10.1007/BF02092132
38. Chen, J., and Xiang, L., “Controllable Synthesis of Calcium Carbonate Polymorphs at Different Temperatures,” Powder Technology, V. 189, No. 1, 2009, pp. 64-69. doi: 10.1016/j.powtec.2008.06.004
39. Chunxiang, Q.; Jianyun, W.; Ruixing, W.; and Liang, C., “Corrosion Protection of Cement-Based Building Materials by Surface Deposition of CaCO3 by Bacillus Pasteurii,” Materials Science and Engineering C, V. 29, No. 4, 2009, pp. 1273-1280. doi: 10.1016/j.msec.2008.10.025
40. De Muynck, W.; Cox, K.; Belie, N. D.; and Verstraete, W., “Bacterial Carbonate Precipitation as an Alternative Surface Treatment for Concrete,” Construction and Building Materials, V. 22, No. 5, 2008, pp. 875-885. doi: 10.1016/j.conbuildmat.2006.12.011
41. Christodoulou, C.; Goodier, C. I.; Austin, S. A.; Webb, J.; and Glass, G. K., “Long-Term Performance of Surface Impregnation of Reinforced Concrete Structures with Silane,” Construction and Building Materials, V. 48, 2013, pp. 708-716. doi: 10.1016/j.conbuildmat.2013.07.038