Title:
Strain-Hardening Ambient-Cured Eco-Friendly Ductile Geopolymer Composites
Author(s):
Mohammed Farooq, Aamer Bhutta, and Nemkumar Banthia
Publication:
Materials Journal
Volume:
117
Issue:
3
Appears on pages(s):
181-189
Keywords:
eco-friendly ductile geopolymer composite (EDGC); fly ash; geopolymer; hybrid binder; polyvinyl alcohol (PVA) fiber; slag; strain hardening
DOI:
10.14359/51724597
Date:
5/1/2020
Abstract:
Ambient-cured eco-friendly ductile geopolymer composites (EDGCs) with 2% uncoated polyvinyl alcohol (PVA) microfibers were developed using fly ash and slag hybrid binder in different proportions, natural sand, and sodium silicate and sodium hydroxide as alkaline activators. Two curing conditions, air-curing and water-curing at ambient temperature, were examined. Results showed that the 100% slag-EDGCs exhibited stiff workability, short setting time of 25 minutes, and provided highest compressive strength (82 to 85 MPa), while 100% fly ash-EDGCs had a long setting time of 4 hours and compressive strength was much lower (12 to 24 MPa). In terms of tensile stress-strain behavior, all EDGCs demonstrated a strain hardening response. The 100% fly ash-EDGCs had a low tensile strength around 3 MPa with high tensile strain capacity (>3%). On the other hand, 100% slag-EDGCs had much higher tensile strength (>5 MPa) with reduced ductility due to fiber rupture resulting from an over-optimal bond between the PVA fibers and EDGC matrix.
Related References:
1. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001
2. Aydin, E., “Novel Coal Bottom Ash Waste Composites for Sustainable Construction,” Construction & Building Materials, V. 124, 2016, pp. 582-588. doi: 10.1016/j.conbuildmat.2016.07.142
3. Durán-Herrera, A.; Juárez, C. A.; Valdez, P.; and Bentz, D. P., “Evaluation of Sustainable High-Volume Fly Ash Concretes,” Cement and Concrete Composites, V. 33, No. 1, 2011, pp. 39-45. doi: 10.1016/j.cemconcomp.2010.09.020
4. Habert, G.; D’Espinose De Lacaillerie, J. B.; and Roussel, N., “An Environmental Evaluation of Geopolymer Based Concrete Production: Reviewing Current Research Trends,” Journal of Cleaner Production, V. 19, No. 11, 2011, pp. 1229-1238. doi: 10.1016/j.jclepro.2011.03.012
5. Juenger, M. C. G.; Winnefeld, F.; Provis, J. L.; and Ideker, J. H., “Advances in Alternative Cementitious Binders,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1232-1243. doi: 10.1016/j.cemconres.2010.11.012
6. Nath, P., and Sarker, P. K., “Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition,” Construction and Building Materials, V. 66, 2014, pp. 163-171. doi: 10.1016/j.conbuildmat.2014.05.080
7. Lee, N. K., and Lee, H. K., “Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature,” Construction and Building Materials, V. 47, 2013, pp. 1201-1209. doi: 10.1016/j.conbuildmat.2013.05.107
8. Kumar, S.; Kumar, R.; and Mehrotra, S. P., “Influence of Granulated Blast Furnace Slag on the Reaction, Structure and Properties of Fly Ash Based Geopolymer,” Journal of Materials Science, V. 45, No. 3, 2010, pp. 607-615. doi: 10.1007/s10853-009-3934-5
9. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Hamdan, S.; and van Deventer, J. S. J., “Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag by the Incorporation of Fly Ash,” Cement and Concrete Composites, V. 45, 2014, pp. 125-135. doi: 10.1016/j.cemconcomp.2013.09.006
10. Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J. S.; Rico, A.; and Rodriguez, J., “A Model for the C-A-S-H Gel Formed in Alkali-Activated Slag Cements,” Journal of the European Ceramic Society, V. 31, No. 12, 2011, pp. 2043-2056. doi: 10.1016/j.jeurceramsoc.2011.04.036
11. Bhutta, A.; Farooq, M.; and Banthia, N., “Matrix Hybridization Using Waste Fuel Ash and Slag in Alkali-Activated Composites and its Influence on Maturity of Fiber-Matrix Bond,” Journal of Cleaner Production, V. 177, 2018, pp. 857-867. doi: 10.1016/j.jclepro.2018.01.001
12. Puligilla, S., and Mondal, P., “Role of Slag in Microstructural Development and Hardening of Fly Ash-Slag Geopolymer,” Cement and Concrete Research, V. 43, No. 1, 2013, pp. 70-80. doi: 10.1016/j.cemconres.2012.10.004
13. Nedeljković, M.; Li, Z.; and Ye, G., “Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content,” Materials (Basel), V. 11, No. 11, 2018, p. 2121 doi: 10.3390/ma11112121
14. Lee, N. K.; Jang, J. G.; and Lee, H. K., “Shrinkage Characteristics of Alkali-Activated Fly Ash/Slag Paste and Mortar at Early Ages,” Cement and Concrete Composites, V. 53, 2014, pp. 239-248. doi: 10.1016/j.cemconcomp.2014.07.007
15. Ye, H.; Cartwright, C.; Rajabipour, F.; and Radlinska, A., “Understanding the Drying Shrinkage Performance of Alkali-Activated Slag Mortars,” Cement and Concrete Composites, V. 76, 2017, pp. 13-24. doi: 10.1016/j.cemconcomp.2016.11.010
16. Ling, Y.; Wang, K.; Li, W.; Shi, G.; and Lu, P., “Effect of Slag on the Mechanical Properties and Bond Strength of Fly Ash-Based Engineered Geopolymer Composites,” Composites. Part B, Engineering, V. 164, 2019, pp. 747-757. doi: 10.1016/j.compositesb.2019.01.092
17. Choi, J. I.; Lee, B. Y.; Ranade, R.; Li, V. C.; and Lee, Y., “Ultra-High-Ductile Behavior of a Polyethylene Fiber-Reinforced Alkali-Activated Slag-Based Composite,” Cement and Concrete Composites, V. 70, 2016, pp. 153-158. doi: 10.1016/j.cemconcomp.2016.04.002
18. Alrefaei, Y., and Dai, J. G., “Tensile Behavior and Microstructure of Hybrid Fiber Ambient Cured One-Part Engineered Geopolymer Composites,” Construction and Building Materials, V. 184, 2018, pp. 419-431. doi: 10.1016/j.conbuildmat.2018.07.012
19. Shaikh, F. U. A.; Fairchild, A.; and Zammar, R., “Comparative Strain and Deflection Hardening Behaviour of Polyethylene Fibre Reinforced Ambient Air and Heat Cured Geopolymer Composites,” Construction and Building Materials, V. 163, 2018, pp. 890-900. doi: 10.1016/j.conbuildmat.2017.12.175
20. Nematollahi, B.; Sanjayan, J.; Qiu, J.; and Yang, E. H., “Micromechanics-Based Investigation of a Sustainable Ambient Temperature Cured One-Part Strain Hardening Geopolymer Composite,” Construction and Building Materials, V. 131, 2017, pp. 552-563. doi: 10.1016/j.conbuildmat.2016.11.117
21. Farooq, M.; Bhutta, A.; and Banthia, N., “Tensile Performance of Eco-Friendly Ductile Geopolymer Composites (EDGC) Incorporating Different Micro-Fibers,” Cement and Concrete Composites, V. 103, 2019, pp. 183-192. doi: 10.1016/j.cemconcomp.2019.05.004
22. Soleimani-Dashtaki, S.; Soleimani, S.; Wang, Q.; Banthia, N.; and Ventura, C. E., “Effect of High Strain-Rates on the Tensile Constitutive Response of Ecofriendly Ductile Cementitious Composite (EDCC),” Procedia Engineering, V. 210, 2017, pp. 93-104. doi: 10.1016/j.proeng.2017.11.053
23. Soleimani-Dashtaki, S.; Ventura, C. E.; and Banthia, N., “Seismic Strengthening of Unreinforced Masonry Walls using Sprayable Eco-Friendly Ductile Cementitious Composite (EDCC),” Procedia Engineering, V. 210, 2017, pp. 154-164. doi: 10.1016/j.proeng.2017.11.061
24. Al-Majidi, M. H.; Lampropoulos, A.; and Cundy, A. B., “Tensile Properties of a Novel Fibre Reinforced Geopolymer Composite with Enhanced Strain Hardening Characteristics,” Composite Structures, V. 168, 2017, pp. 402-427. doi: 10.1016/j.compstruct.2017.01.085
25. Ambily, P. S.; Ravisankar, K.; Umarani, C.; Dattatreya, J. K.; and Iyer, N. R., “Development of Ultra-High-Performance Geopolymer Concrete,” Magazine of Concrete Research, V. 66, No. 2, 2014, pp. 82-89. doi: 10.1680/macr.13.00057
26. Alomayri, T.; Shaikh, F. U. A.; and Low, I. M., “Mechanical and Thermal Properties of Ambient Cured Cotton Fabric-Reinforced Fly Ash-Based Geopolymer Composites,” Ceramics International, V. 40, No. 9, 2014, pp. 14019-14028. doi: 10.1016/j.ceramint.2014.05.128
27. Nedeljković, M.; Šavija, B.; Zuo, Y.; Lukovic, M.; and Ye, G., “Effect of Natural Carbonation on the Pore Structure and Elastic Modulus of the Alkali-Activated Fly Ash and Slag Pastes,” Construction and Building Materials, V. 161, 2018, pp. 687-704. doi: 10.1016/j.conbuildmat.2017.12.005
28. ASTM C1437-15, “Standard Test Method for Flow of Hydraulic Cement Mortar,” ASTM International, West Conshohocken, PA, 2015, 2 pp.
29. ASTM C191-13, “Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle,” ASTM International, West Conshohocken, PA, 2013, 8 pp.
30. ASTM C109/C109M-16, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2016, 10 pp.
31. Panda, B., and Tan, M. J., “Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing,” Ceramics International, V. 44, No. 9, 2018, pp. 10258-10265. doi: 10.1016/j.ceramint.2018.03.031
32. Hardjito, D.; Wallah, S. E.; Sumajouw, D. M. J.; and Rangan, B. V., “On the Development of Fly Ash Based Geopolymer Concrete,” ACI Materials Journal, V. 101, No. 6, Nov.-Dec. 2004, pp. 467-472.
33. Zhang, Z.; Provis, J. L.; Reid, A.; and Wang, H., “Fly Ash-Based Geopolymers: The Relationship between Composition, Pore Structure and Efflorescence,” Cement and Concrete Research, V. 64, 2014, pp. 30-41. doi: 10.1016/j.cemconres.2014.06.004
34. Zhang, Z.; Provis, J. L.; Ma, X.; Reid, A.; and Wang, H., “Efflorescence and Subflorescence Induced Microstructural and Mechanical Evolution in Fly Ash-Based Geopolymers,” Cement and Concrete Composites, V. 92, June 2018, pp. 165-177. doi: 10.1016/j.cemconcomp.2018.06.010
35. Allahverdi, A.; Kani, E. N.; and Yazdanipour, M., “Effects of Blast-Furnace Slag on Natural Pozzolan-Based Geopolymer Cement,” Ceramics-Silikáty, V. 55, No. 1, 2011, pp. 68-78.
36. Najafi Kani, E.; Allahverdi, A.; and Provis, J. L., “Efflorescence Control in Geopolymer Binders Based on Natural Pozzolan,” Cement and Concrete Composites, V. 34, No. 1, 2012, pp. 25-33. doi: 10.1016/j.cemconcomp.2011.07.007
37. Nematollahi, B.; Sanjayan, J.; and Shaikh, F. U. A., “Matrix Design of Strain Hardening Fiber Reinforced Engineered Geopolymer Composite,” Composites. Part B, Engineering, V. 89, 2016, pp. 253-265. doi: 10.1016/j.compositesb.2015.11.039
38. Li, V. C.; Mishra, D. K.; and Wu, H. C., “Matrix Design for Pseudo-Strain-Hardening Fibre Reinforced Cementitious Composites,” Materials and Structures, V. 28, No. 10, 1995, pp. 586-595. doi: 10.1007/BF02473191
39. Bhutta, A.; Farooq, M.; and Banthia, N., “Performance Characteristics of Micro Fiber-Reinforced Geopolymer Mortars for Repair,” Construction and Building Materials, V. 215, 2019, pp. 605-612. doi: 10.1016/j.conbuildmat.2019.04.210
40. Nedeljković, M.; Luković, M.; van Breugel, K.; Hordijk, D.; and Ye, G., “Development and Application of an Environmentally Friendly Ductile Alkali-Activated Composite,” Journal of Cleaner Production, V. 180, 2018, pp. 524-538. doi: 10.1016/j.jclepro.2018.01.162