Using Particle Characterization to Study Fly Ash Dissolution and Leaching in Water and KOH Solution

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Using Particle Characterization to Study Fly Ash Dissolution and Leaching in Water and KOH Solution

Author(s): Taehwan Kim, Qinang Hu, M. Tyler Ley, Mohammed Aboustait, and Jeffrey W. Bullard

Publication: Materials Journal

Volume: 116

Issue: 4

Appears on pages(s): 5-17

Keywords: automated scanning electron microscope (ASEM); characterization; dissolution; energy-dispersive spectrometer (EDS); fly ash; leaching

DOI: 10.14359/51716676

Date: 7/1/2019

Abstract:
This paper presents the results of the physical and chemical changes of Class F fly ashes exposed to either deionized water or to a 0.4 mol/L KOH solution for 15 or 45 minutes. The changes in physical and chemical makeup of thousands of individual particles before and after being exposed to solutions are analyzed using an autonomous scanning electron microscope. The results show that individual fly ash particles with CaO > 70% by mass completely dissolved. Particles with a CaO < 30% by mass leached sulfur and the remaining undissolved particles showed no measurable change in diameter or physical appearance. Similar observations were made from three different fly ash sources despite showing differences in their total oxide content. These results suggest that only certain particles with a narrow chemistry (CaO < 30% by mass) are responsible for the early age leaching of sulfur. This means that different fly ash particles could be responsible for modifying the sulfur balance in concrete observed in fly ash mixtures at different ages. These observations also give insights into the initial interactions between fly ash and alkali activators in alkali-activated materials.

Related References:

1. ACI Committee 232, “Use of Fly Ash in Concrete (ACI 232.2R-96),” American Concrete Institute, Farmington Hills, MI, 1996, 34 pp.

2. Ramezanianpour, A. A., Cement Replacement Materials, Springer-Verlag, Berlin, Germany, 2014.

3. Ahmaruzzaman, M., “A Review on the Utilization of Fly Ash,” Progress in Energy and Combustion Science, V. 36, No. 3, 2010, pp. 327-363. doi: 10.1016/j.pecs.2009.11.003

4. Duxson, P., and Provis, J. L., “Designing Precursors for Geopolymer Cements,” Journal of the American Ceramic Society, V. 91, No. 12, 2008, pp. 3864-3869. doi: 10.1111/j.1551-2916.2008.02787.x

5. Tastan, E. O.; Edil, T. B.; Benson, C. H.; and Aydilek, A. M., “Stabilization of Organic Soils with Fly Ash,” Journal of Geotechnical and Geoenvironmental Engineering, V. 137, No. 9, 2011, pp. 819-833. doi: 10.1061/(ASCE)GT.1943-5606.0000502

6. McCarthy, M. J., and Dhir, R. K., “Development of High Volume Fly Ash Cements for Use in Concrete Construction,” Fuel, V. 84, No. 11, 2005, pp. 1423-1432. doi: 10.1016/j.fuel.2004.08.029

7. Berry, E. E.; Hemmings, R. T.; and Cornelius, B. J., “Mechanisms of Hydration Reactions in High Volume Fly Ash Pastes and Mortars,” Cement and Concrete Composites, V. 12, No. 4, 1990, pp. 253-261. doi: 10.1016/0958-9465(90)90004-H

8. Zhang, M. H., “Microstructure, Crack Propagation, and Mechanical Properties of Cement Pastes Containing High Volumes of Fly Ashes,” Cement and Concrete Research, V. 25, No. 6, 1995, pp. 1165-1178. doi: 10.1016/0008-8846(95)00109-P

9. Bentz, D. P., and Ferraris, C. F., “Rheology and Setting of High Volume Fly Ash Mixtures,” Cement and Concrete Composites, V. 32, No. 4, 2010, pp. 265-270. doi: 10.1016/j.cemconcomp.2010.01.008

10. Malhotra, V. M., “Durability of Concrete Incorporating High-Volume of Low-Calcium (ASTM Class F) Fly Ash,” Cement and Concrete Composites, V. 12, No. 4, 1990, pp. 271-277. doi: 10.1016/0958-9465(90)90006-J

11. Siddique, R., “Performance Characteristics of High-Volume Class F Fly Ash Concrete,” Cement and Concrete Research, V. 34, No. 3, 2004, pp. 487-493. doi: 10.1016/j.cemconres.2003.09.002

12. Chen-Tan, N. W.; Van Riessen, A.; Ly, C. V.; and Southam, D. C., “Determining the Reactivity of a Fly Ash for Production of Geopolymer,” Journal of the American Ceramic Society, V. 92, No. 4, 2009, pp. 881-887. doi: 10.1111/j.1551-2916.2009.02948.x

13. Provis, J. L., “Geopolymers and Other Alkali Activated Materials: Why, How, and What?” Materials and Structures, V. 47, No. 1-2, 2014, pp. 11-25. doi: 10.1617/s11527-013-0211-5

14. White, S. C., and Case, E. D., “Characterization of Fly Ash from Coal-Fired Power Plants,” Journal of Materials Science, V. 25, No. 12, 1990, pp. 5215-5219. doi: 10.1007/BF00580153

15. Izquierdo, M., and Querol, X., “Leaching Behaviour of Elements from Coal Combustion Fly Ash: An Overview,” International Journal of Coal Geology, V. 94, 2012, pp. 54-66. doi: 10.1016/j.coal.2011.10.006

16. Moreno, N.; Querol, X.; Andrés, J. M.; Stanton, K.; Towler, M.; Nugteren, H.; Janssen-Jurkovicová, M.; and Jones, R., “Physico-Chemical Characteristics of European Pulverized Coal Combustion Fly Ashes,” Fuel, V. 84, No. 11, 2005, pp. 1351-1363. doi: 10.1016/j.fuel.2004.06.038

17. Mikuni, A.; Komatsu, R.; and Ikeda, K., “Dissolution Properties of Some Fly Ash Fillers Applying to Geopolymeric Materials in Alkali Solution,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 2953-2957. doi: 10.1007/s10853-006-0530-9

18. Iwashita, A.; Sakaguchi, Y.; Nakajima, T.; Takanashi, H.; Ohki, A.; and Kambara, S., “Leaching Characteristics of Boron and Selenium for Various Coal Fly Ashes,” Fuel, V. 84, No. 5, 2005, pp. 479-485. doi: 10.1016/j.fuel.2004.11.002

19. Li, C.; Li, Y.; Sun, H.; and Li, L., “The Composition of Fly Ash Glass Phase and its Dissolution Properties Applying to Geopolymeric Materials,” Journal of the American Ceramic Society, V. 94, No. 6, 2011, pp. 1773-1778. doi: 10.1111/j.1551-2916.2010.04337.x

20. Carette, G. G., and Malhotra, V. M., “Characterization of Canadian Fly Ashes and Their Relative Performance in Concrete,” Canadian Journal of Civil Engineering, V. 14, No. 5, 1987, pp. 667-682. doi: 10.1139/l87-097

21. Pietersen, H. S.; Fraay, A. L. A.; and Bijen, J. M., “Reactivity of Fly Ash at High pH,” Materials Research Society Symposium Proceedings, 1990.

22. McCarthy, G. J.; Swanson, K. D.; Keller, L. P.; and Blatter, W. C., “Mineralogy of Western Fly Ash,” Cement and Concrete Research, V. 14, No. 4, 1984, pp. 471-478. doi: 10.1016/0008-8846(84)90121-2

23. Chancey, R. T.; Stutzman, P.; Juenger, M. C. G.; and Fowler, D. W., “Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Fly Ash,” Cement and Concrete Research, V. 40, No. 1, 2010, pp. 146-156. doi: 10.1016/j.cemconres.2009.08.029

24. Diaz, E. I.; Allouche, E. N.; and Eklund, S., “Factors Affecting the Suitability of Fly Ash as Source Material for Geopolymers,” Fuel, V. 89, No. 5, 2010, pp. 992-996. doi: 10.1016/j.fuel.2009.09.012

25. Dale, P. B., “Powder Additions to Mitigate Retardation in High-Volume Fly Ash Mixtures,” ACI Materials Journal, V. 107, No. 5, Sept.-Oct. 2010, pp. 508-514.

26. Fajun, W.; Grutzeck, M. W.; and Roy, D. M., “The Retarding Effects of Fly Ash upon the Hydration of Cement Pastes: The First 24 Hours,” Cement and Concrete Research, V. 15, No. 1, 1985, pp. 174-184. doi: 10.1016/0008-8846(85)90024-9

27. Naik, T. R., and Singh, S. S., “Influence of Fly Ash on Setting and Hardening Characteristics of Concrete Systems,” ACI Materials Journal, V. 94, No. 5, Sept.-Oct. 1997, pp. 355-360.

28. Pacewska, B.; Blonkowski, G.; and Wilinska, I., “Investigations of the Influence of Different Fly Ashes on Cement Hydration,” Journal of Thermal Analysis and Calorimetry, V. 86, No. 1, 2006, pp. 179-186. doi: 10.1007/s10673-005-7136-7

29. Gutteridge, W. A., and Dalziel, J. A., “Filler Cement: The Effect of the Secondary Component on the Hydration of Portland Cement: Part 2: Fine Hydraulic Binders,” Cement and Concrete Research, V. 20, No. 6, 1990, pp. 853-861. doi: 10.1016/0008-8846(90)90046-Z

30. Ogawa, K.; Uchikawa, H.; Takemoto, K.; and Yasui, I., “The Mechanism of the Hydration in the System C3S-Pozzolana,” Cement and Concrete Research, V. 10, No. 5, 1980, pp. 683-696. doi: 10.1016/0008-8846(80)90032-0

31. Ravina, D., and Mehta, P. K., “Properties of Fresh Concrete Containing Large Amounts of Fly Ash,” Cement and Concrete Research, V. 16, No. 2, 1986, pp. 227-238. doi: 10.1016/0008-8846(86)90139-0

32. Niemuth, M. D., “Effect of Fly Ash on the Optimum Sulfate of Portland Cement,” PhD thesis, Purdue University, West Lafayette, IN, 2012, 475 pp.

33. Niemuth, M.; Barcelo, L.; and Weiss, J., “Effect of Fly Ash on Optimum Sulfate Levels Measured Using Heat and Strength at Early Ages,” Advances in Civil Engineering Materials, V. 1, No. 1, 2012, pp. 1-18. doi: 10.1520/ACEM20120012

34. Roberts, L. R., and Taylor, P. C., “Understanding Cement-SCM-Admixture Interaction Issues,” Concrete International, V. 29, No. 1, Jan. 2007, pp. 33-41.

35. Granizo, M. L.; Alonso, S.; Blanco-Varela, M. T.; and Palomo, A., “Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction,” Journal of the American Ceramic Society, V. 85, No. 1, 2002, pp. 225-231. doi: 10.1111/j.1151-2916.2002.tb00070.x

36. Yip, C. K.; Lukey, G. C.; Provis, J. L.; and van Deventer, J. S. J., “Effect of Calcium Silicate Sources on Geopolymerisation,” Cement and Concrete Research, V. 38, No. 4, 2008, pp. 554-564. doi: 10.1016/j.cemconres.2007.11.001

37. Aboustait, M.; Kim, T.; Ley, M. T.; and Davis, J. M., “Physical and Chemical Characteristics of Fly Ash Using Automated Scanning Electron Microscopy,” Construction & Building Materials, V. 106, 2016, pp. 1-10. doi: 10.1016/j.conbuildmat.2015.12.098

38. Kim, T.; Davis, J. M.; Ley, M. T.; Kang, S.; and Amrollahi, P., “Fly Ash Particle Characterization for Predicting Concrete Compressive Strength,” Construction and Building Materials, V. 165, 2018, pp. 560-571. doi: 10.1016/j.conbuildmat.2018.01.059

39. Kim, T.; Moradian, M.; and Ley, M. T., “Dissolution and Leaching of Fly Ash in Nitric Acid Using Automated Scanning Electron Microscopy,” Advances in Civil Engineering Materials, V. 7, No. 1, 2018, pp. 291-307. doi: 10.1520/ACEM20180016

40. Kim, T., and Olek, J., “The Effects of Lithium Ions on Chemical Sequence of Alkali-Silica Reaction,” Cement and Concrete Research, V. 79, 2016, pp. 159-168. doi: 10.1016/j.cemconres.2015.09.013

41. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001

42. Chappex, T., and Scrivener, K., “Alkali Fixation of C–S–H in Blended Cement Pastes and Its Relation to Alkali Silica Reaction,” Cement and Concrete Research, V. 42, No. 8, 2012, pp. 1049-1054. doi: 10.1016/j.cemconres.2012.03.010

43. Panchmatia, P.; Olek, J.; and Kim, T., “The Influence of Air Cooled Blast Furnace Slag (ACBFS) Aggregate on the Concentration of Sulfates in Concrete’s Pore Solution,” Construction and Building Materials, V. 168, 2018, pp. 394-403. doi: 10.1016/j.conbuildmat.2018.02.133

44. Kim, A. G., and Kazonich, G., “The Silicate/Non-Silicate Distribution of Metals in Fly Ash and its Effect on Solubility,” Fuel, V. 83, No. 17-18, 2004, pp. 2285-2292. doi: 10.1016/j.fuel.2004.06.005

45. ASTM C618-12a, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2012, 5 pp.

46. Aboustait, M.; Hu, Q.; Frazier, R.; Zhang, Y.; Tabb, B.; Ley, T.; and Hanna, J., “Innovative Prediction of Fly Ash Performance in Concrete,” Oklahoma Transportation Center, Midwest City, OK, 2013, 78 pp.

47. Armstrong, J. T., and Buseck, P. R., “Quantitative Chemical Analysis of Individual Microparticles Using the Electron Microprobe. Theoretical,” Analytical Chemistry, V. 47, No. 13, 1975, pp. 2178-2192. doi: 10.1021/ac60363a033

48. Armstrong, J., “Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments,” Electron Probe Quantitation, K. F. J. Heinrich and D. Newbury, eds., Springer, 1991, pp. 261-315.

49. Packwood, R. H., and Brown, J. D., “A Gaussian Expression to Describe ϕ(ρz) Curves for Quantitative Electron Probe Microanalysis,” X-Ray Spectrometry, V. 10, No. 3, 1981, pp. 138-146. doi: 10.1002/xrs.1300100311

50. Love, G., and Scott, V. D., “Evaluation of a New Correction Procedure for Quantitaitive Electron Probe Microanalysis,” Journal of Physics. D, Applied Physics, V. 11, No. 10, 1978, pp. 1369-1376. doi: 10.1088/0022-3727/11/10/002

51. Armstrong, J. T., and Buseck, P. R., “A General Characteristic Fluorescence Correction for the Quantitative Electron Microbeam Analysis of Thick Specimens, Thin Films and Particles,” X-Ray Spectrometry, V. 14, No. 4, 1985, pp. 172-182. doi: 10.1002/xrs.1300140408

52. “Available on the internet, CalcZAF,” http://epmalab.uoregon.edu/calczaf.htm.

53. Armstrong, J. T.; Donovan, J. J.; and Carpenter, P. C., “CALCZAF, TRYZAF and CITZAF: The Use of Multi-Correction-Algorithm Programs for Estimateing Uncertainties and Improving Quantitative X-Ray Analysis of Difficulty Specimens,” Microscopy and Microanalysis, V. 19, 2013, pp. 812-813. doi: 10.1017/S1431927613006053

54. Dang, J.; Shen, X.; Castel, A.; and Aldred, J., “Monitoring Apparent pH Value in Geopolymer Concrete Using Glass Electrode,” 33rd International Symposium on Automation and Robotics in Construction and Mining, ISARC, Auburn, AL, 2016.

55. Snellings, R., “Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates,” Journal of the American Ceramic Society, V. 96, No. 8, 2013, pp. 2467-2475. doi: 10.1111/jace.12480

56. Warner, R. M., Applied Statistics: From Bivariate through Multivariate Techniques, Sage Publications, Thousand Oaks, CA, 2008.

57. Pett, M. A., Nonparametric Statistics for Health Care Research: Statistics for Small Samples and Unusual Distributions, Sage Publications, Thousand Oaks, CA, 1997.

58. Corder, G. W., and Foreman, D. I., “Nonparametric Statistics: An Introduction,” Nonparametric Statistics for Non-Statisticians, John Wiley & Sons, Inc., New York, 2009, pp. 1-11.

59. Berry, E. E.; Hemmings, R. T.; and Golden, D. M., “Enhanced Resource Recovery by Beneficiation and Direct Acid Leaching of Fly Ash,” Materials Research Society Symposium Proceedings, 1987.

60. Seidel, A., and Zimmels, Y., “Mechanism and Kinetics of Aluminum and Iron Leaching from Coal Fly Ash by Sulfuric Acid,” Chemical Engineering Science, V. 53, No. 22, 1998, pp. 3835-3852. doi: 10.1016/S0009-2509(98)00201-2

61. Soroczak, M. M.; Eaton, H. C.; and Tittlebaum, M. E., “An ESCA and SEM Study of Changes in the Surface Composition and Morphology of Low-Calcium Coal Fly Ash as a Function of Aqueous Leaching,” Materials Research Society Symposium Proceedings, 1987.

62. Hu, Q.; Ley, M. T.; Davis, J.; Hanan, J. C.; Frazier, R.; and Zhang, Y., “3D Chemical Segmentation of Fly Ash Particles with X-Ray Computed Tomography and Electron Probe Microanalysis,” Fuel, V. 116, 2014, pp. 229-236. doi: 10.1016/j.fuel.2013.07.037

63. Hu, Q.; Aboustait, M.; Ley, M. T.; Hanan, J. C.; Rose, V.; and Winarski, R., “Combined Three-Dimensional Structure and Chemistry Imaging with Nanoscale Resolution,” Acta Materialia, V. 77, 2014, pp. 173-182. doi: 10.1016/j.actamat.2014.05.050

64. Ley, M. T.; Hu Q.; Aboustait M.; Hanan J.; Davis, J.; and Winarski; R., “Multi Scale Charaterization of the Chemical Phases within Fly Ash with Synchrotron and Laboratory Techniques,” 14th Euroseminar on Microscopy Applied Buliding Materials, Helsingør, Denmark, 2013.

65. Jones, D. R., “The Leaching of Major and Trace Elements from Coal Ash,” Environmental Aspects of Trace Elements in Coal, D. J. Swaine and F. Goodarzi, eds., Springer Netherlands, Dordrecht, the Netherlands, 1995, pp. 221-262.

66. Hjelmar, O., “Leachate from Land Disposal of Coal Fly Ash,” Waste Management & Research, V. 8, No. 1, 1990, pp. 429-449. doi: 10.1177/0734242X9000800170

67. Querol, X.; Umaña, J. C.; Alastuey, A.; Ayora, C.; Lopez-Soler, A.; and Plana, F., “Extraction of Soluble Major and Trace Elements from Fly Ash in Open and Closed Leaching Systems,” Fuel, V. 80, No. 6, 2001, pp. 801-813. doi: 10.1016/S0016-2361(00)00155-1

68. Clarke, L. B., “The Fate of Trace Elements in Emissions Control Systems,” Environmental Aspects of Trace Elements in Coal, D. J. Swaine and F. Goodarzi, eds., Springer Netherlands, Dordrecht, the Netherlands, 1995, pp. 128-145.

69. Meji, R., “The Distribution of Trace Elements during the Combustion of Coal,” Environmental Aspects of Trace Elements in Coal, D. J. Swaine and F. Goodarzi, eds., Springer Netherlands, Dordrecht, the Netherlands, 1995, pp. 111-127.

70. Ragland, K. W., and Bryden, K. M., Combustion Engineering, second edition, CRC Press, Boca Raton, FL, 2011.

71. Davis, W. T., and Fiedler, M. A., “The Retention of Sulfur in Fly Ash from Coal-Fired Boilers,” Journal of the Air Pollution Control Association, V. 32, No. 4, 1982, pp. 395-397. doi: 10.1080/00022470.1982.10465419

72. Joshi, R. C., and Lohita, R. P., Fly Ash in Concrete: Production, Properties and Uses, Taylor & Francis, London, UK, 1997.

73. Page, A. L.; Elseewi, A.; and Straughan, I. R., “Physical and Chemical Properties of Fly Ash from Coal-Fired Power Plants with Reference to Environmental Impacts,” Residue Reviews, V. 71, Springer, New York, 1979, pp. 83-120.

74. Querol, X.; Umana, J. C.; Alastuey, A.; Bertrana, C.; Lopez-Soler, A.; and Plana, F., “Physicochemical Characterization of Spanish Fly Ashes,” Energy Sources, V. 21, No. 10, 1999, pp. 883-898. doi: 10.1080/00908319950014263

75. Myers, R. L., The 100 Most Important Chemical Compounds: A Reference Guide, Greenwood, Westport, CT, 2007.

76. Powers, T. C., and Steinour, H. H., “An Interpretation of Some Published Researches on the Alkali-Aggregate Reaction, Part 1—The Chemical Reactions and Mechanism of Expansion,” ACI Journal Proceedings, V. 51, No. 2, Feb. 1955, pp. 497-516.

77. Carman, P. C., “Constitution of Colloidal Silica,” Transactions of the Faraday Society, V. 36, 1940, pp. 964-973. doi: 10.1039/tf9403600964


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer