Electrical Resistivity of Concrete Exposed to Chlorides and Sulfates

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Electrical Resistivity of Concrete Exposed to Chlorides and Sulfates

Author(s): Ronaldo A. Medeiros-Junior, Patrícia Schnepper Gans, Eduardo Pereira, and Elias Pereira

Publication: Materials Journal

Volume: 116

Issue: 3

Appears on pages(s): 119-130

Keywords: chloride; compressive strength; electrical resistivity; sulfate; wetting and drying cycles

DOI: 10.14359/51714464

Date: 5/1/2019

Abstract:
Correlations between compressive strength and electrical resistivity of concretes exposed to different aggressive conditions were sought to evaluate concrete quality. Concrete specimens were cast with four water-cement ratios (w/c) and exposed to five different conditions of water, chloride, and sulfate solutions. Electrical resistivity and compressive strength tests were performed from 28 to 189 days. The results were statistically analyzed and supported by SEM and XRD analyses. When correlating both properties, higher coefficients of determination were found for conditions of underwater and wetting and drying cycles in water. In general, 71.4% of the coefficients of determination were greater than 0.700. The lowest correlations were found for concrete exposed to chloride solutions because the electrical resistivity of the specimens in these conditions tends to remain constant over time.

Related References:

1. de Bem, D. H.; Lima, D. P. B.; and Medeiros-Junior, R. A., “Effect of Chemical Admixtures on Concrete’s Electrical Resistivity,” International Journal of Building Pathology and Adaptation, V. 36, No. 2, 2018, pp. 174-187. doi: 10.1108/IJBPA-11-2017-0058

2. Ferreira, R. M., and Jalali, S., “NDT Measurements for the Prediction of 28-Day Compressive Strength,” NDT & E International, V. 43, No. 2, 2010, pp. 55-61. doi: 10.1016/j.ndteint.2009.09.003

3. Medeiros-Junior, R. A.; Lima, M. G.; Medeiros, M. H. F.; and Real, L. V., “Investigation of the Compressive Strength and Electrical Resistivity of Concrete with Different Cement Types” (in Portuguese: Investigação da resistência à compressão e da resistividade elétrica de concretos com diferentes tipos de cimento),” Revista ALCONPAT, V. 4, No. 2, 2014, pp. 113-128. doi: 10.21041/ra.v4i2.21

4. Lübeck, A., Gastaldini, A. L. G., Barin, D. S., and Siqueira, H. C., “Compressive Strength and Electrical Properties of Concrete with White Portland Cement and Blast-Furnace Slag,” Cement and Concrete Composites, V. 34, No. 3, 2012, pp. 392-399.

5. Wei, X.; Xiao, L.; and Li, Z., “Prediction of Standard Compressive Strength of Cement by the Electrical Resistivity Measurement,” Construction and Building Materials, V. 31, 2012, pp. 341-346. doi: 10.1016/j.conbuildmat.2011.12.111

6. Dong, B.; Zhang, J.; Wang, Y.; Fang, G.; Liu, Y.; and Xing, F., “Evolutionary Trace for Early Hydration of Cement Paste Using Electrical Resistivity Method,” Construction and Building Materials, V. 119, 2016, pp. 16-20. doi: 10.1016/j.conbuildmat.2016.03.127

7. Gao, J.; Yu, Z.; Song, L.; Wang, T.; and Wei, S., “Durability of Concrete Exposed to Sulfate Attack Under Flexural Loading and Drying-Wetting Cycles,” Construction and Building Materials, V. 39, 2013, pp. 33-38. doi: 10.1016/j.conbuildmat.2012.05.033

8. Yuan, J.; Liu, Y.; Tan, Z.; and Zhang, B., “Investigating the Failure Process of Concrete Under the Coupled Actions Between Sulfate Attack and Drying-Wetting Cycles by Using X-Ray CT,” Construction and Building Materials, V. 108, 2016, pp. 129-138. doi: 10.1016/j.conbuildmat.2016.01.040

9. Jiang, L., and Niu, D., “Study of Deterioration of Concrete Exposed to Different Types of Sulfate Solutions Under Drying-Wetting Cycles,” Construction and Building Materials, V. 117, 2016, pp. 88-98. doi: 10.1016/j.conbuildmat.2016.04.094

10. Mazer, W.; Lima, M. G.; and Medeiros-Junior, R. A., “Fuzzy Logic for Estimating Chloride Diffusion in Concrete,” Proceedings of the Institution of Civil Engineers, Structures and Buildings, V. 171, No. 7, 2018, pp. 542-551. doi: 10.1680/jstbu.16.00153

11. Qi, B.; Gao, J.; Chen, F.; and Shen, D., “Evaluation of the Damage Process of Recycled Aggregate Concrete Under Sulfate Attack and Wetting-Drying Cycles,” Construction and Building Materials, V. 138, 2017, pp. 254-262. doi: 10.1016/j.conbuildmat.2017.02.022

12. Medeiros-Junior, R. A.; Lima, M. G.; Yazigi, R.; and Medeiros, M. H. F., “Carbonation Depth in 57 Years Old Concrete Structures,” Steel and Composite Structures, V. 19, No. 4, 2015, pp. 953-966. doi: 10.12989/scs.2015.19.4.953

13. Figueiredo, C. P.; Santos, F. B.; Cascudo, O.; Carasek, H.; Cachim, P.; and Velosa, A., “The Role of Metakaolin in the Protection of Concrete Against the Deleterious Action of Chlorides,” Revista IBRACON de Estruturas e Materiais, V. 7, No. 4, 2014, pp. 685-708. doi: 10.1590/S1983-41952014000400008

14. Malheiro, R. L. M. C.; Camões, A.; Ferreira, R. M.; Meira, G.; Amorim, M. T.; and Reis, R., “Influence of Carbonation on the Transport of Chlorides in Mortars Subjected to the Combined Action of These Two Agents” (in Portuguese: Influência da carbonatação no transporte de cloretos em argamassas submetidas à ação combinada destes dois agents), In: Proceedings of Luso-Brazilian Congress on Sustainable Construction Materials, University of Minho, Portugal, 2014, pp. 479-487.

15. Yu, Z.; Chen, Y.; Liu, P.; and Wang, W., “Accelerated Simulation of Chloride Ingress into Concrete under Drying-Wetting Alternation Condition Chloride Environment,” Construction and Building Materials, V. 93, 2015, pp. 205-213. doi: 10.1016/j.conbuildmat.2015.05.090

16. Wu, J.; Li, H.; Wang, Z.; and Liu, J., “Transport Model of Chloride Ions in Concrete under Loads and Drying-Wetting Cycles,” Construction and Building Materials, V. 112, 2016, pp. 733-738. doi: 10.1016/j.conbuildmat.2016.02.167

17. Zhu, X.; Zi, G.; Cao, Z.; and Cheng, X., “Combined Effect of Carbonation and Chloride Ingress in Concrete,” Construction and Building Materials, V. 110, 2016, pp. 369-380. doi: 10.1016/j.conbuildmat.2016.02.034

18. Ye, H.; Jin, X.; Fu, C.; Jin, N.; Xu, Y.; and Huang, T., “Chloride Penetration in Concrete Exposed to Cyclic Drying-Wetting and Carbonation,” Construction and Building Materials, V. 112, 2016, pp. 457-463. doi: 10.1016/j.conbuildmat.2016.02.194

19. Wang, X. H., and Gao, Y., “Corrosion Behavior of Epoxy-Coated Reinforced Bars in RC Test Specimens Subjected to Pre-Exposure Loading and Wetting-Drying Cycles,” Construction and Building Materials, V. 119, 2016, pp. 185-205. doi: 10.1016/j.conbuildmat.2016.05.066

20. Otieno, M.; Beushausen, H.; and Alexander, M., “Chloride-Induced Corrosion of Steel in Cracked Concrete—Part I: Experimental Studies Under Accelerated and Natural Marine Environments,” Cement and Concrete Research, V. 79, 2016, pp. 373-385. doi: 10.1016/j.cemconres.2015.08.009

21. Fernandes, S. E.; Tashima, M. M.; Moraes, J. C. B.; Istuque, D. B.; Fioriti, C. F.; Melges, J. L. P.; and Akasaki, J. L., “Sugarcane Bagasse Ash (SBA) as Mineral Addition in Concretes to Verify Their Durability” (in Portuguese: “Cinza de bagaço de cana-de-açúcar (CBC) como adição mineral em concretos para verificação de sua durabilidade),” Revista Matéria, V. 20, No. 4, 2015, pp. 909-923. doi: 10.1590/S1517-707620150004.0096

22. Chen, Y.; Gao, J.; Tang, L.; and Li, X., “Resistance of Concrete Against Combined Attack of Chloride and Sulfate Under Drying-Wetting Cycles,” Construction and Building Materials, V. 106, 2016, pp. 650-658. doi: 10.1016/j.conbuildmat.2015.12.151

23. Gong, J.; Cao, J.; and Wang, Y. F., “Effects of Sulfate Attack and Dry-Wet Circulation on Creep of Fly-Ash Slag Concrete,” Construction and Building Materials, V. 125, 2016, pp. 12-20. doi: 10.1016/j.conbuildmat.2016.08.023

24. NBR 5738, “Concrete—Procedure of Molding and Curing of Concrete Test Specimens” (in Portuguese: Concreto—procedimento para moldagem e cura de corpos de prova), Brazilian Association of Technical Standards – ABNT, Brazil, 2015.

25. Mehta, P. K., and Monteiro, P. J. M., Concrete: Structures, Properties and Materials, third edition, Sao Paulo, Pini, 2014.

26. Weast, R. C., Handbook of Chemistry and Physics, 46th edition, Chemical Rubber Company, Cleveland, OH, 1965.

27. Pradhan, B., “Corrosion Behavior of Steel Reinforcement in Concrete Exposed to Composite Chloride–Sulfate Environment,” Construction and Building Materials, V. 72, 2014, pp. 398-410. doi: 10.1016/j.conbuildmat.2014.09.026

28. Chiker, T.; Aggoun, S.; Houari, H.; and Siddique, R., “Sodium Sulfate and Alternative Combined Sulfate/Chloride Action on Ordinary and Self-Consolidating PLC-Based Concretes,” Construction and Building Materials, V. 106, 2016, pp. 342-348. doi: 10.1016/j.conbuildmat.2015.12.123

29. NBR 5739, “Concrete—Compression Tests of Cylindrical Specimens” (in Portuguese: Concreto—ensaios de compressão de corpos-de-prova cilíndricos), Brazilian Association of Technical Standards, ABNT, Brazil, 2007.

30. UNE 83988-2, “Concrete Durability. Test Methods. Determination of the Electrical Resistivity—Part 2: Four Points or Wenner Method” (in Spanish: Durabilidad del hormigón. Métodos de ensayo. Determinación de la resistividad eléctrica. Parte 2: Método de las cuatro puntas o de Wenner), Spanish Association for Standardization, Spain, 2014.

31. Andrade, C., and D’Andréa, R., “Electrical Resistivity as Parameter of Control of the Concrete and its Durability” (in Spanish: “La resistividad eléctrica como parámetro de control del hormigón y de su durabilidade),” Revista ALCONPAT, V. 1, No. 2, 2011, pp. 91-101. doi: 10.21041/ra.v1i2.8

32. Presuel-Moreno, F.; Wu, Y. Y.; and Liu, Y., “Effect of Curing Regime on Concrete Resistivity and Aging Factor Over Time,” Construction and Building Materials, V. 48, 2013, pp. 874-882. doi: 10.1016/j.conbuildmat.2013.07.094

33. Mendes, S. E. S.; Oliveira, R. L. N.; Cremonez, C.; Pereira, E.; Pereira, E.; and Medeiros-Junior, R. A., “Electrical Resistivity as a Durability Parameter for Concrete Design: Experimental Data Versus Estimation by Mathematical Model,” Construction and Building Materials, V. 192, 2018, pp. 610-620. doi: 10.1016/j.conbuildmat.2018.10.145

34. Yousuf, F.; Wei, X.; and Tao, J., “Evaluation of the Influence of a Superplasticizer on the Hydration of Varying Composition Cements by the Electrical Resistivity Measurement Method,” Construction and Building Materials, V. 144, 2017, pp. 25-34. doi: 10.1016/j.conbuildmat.2017.03.138

35. Esteves, I. C. A.; Medeiros-Junior, R. A.; and Medeiros, M. H. F., “NDT for Bridges Durability Assessment on Urban-Industrial Environment in Brazil,” International Journal of Building Pathology and Adaptation, V. 36, No. 5, 2018, pp. 500-515. doi: 10.1108/IJBPA-04-2018-0032

36. Buzzi, O.; Boulon, M.; Hervé, M.; and Su, K., “Leaching of Rock-Concrete Interfaces,” Rock Mechanics and Rock Engineering, V. 41, No. 3, 2008, pp. 445-466. doi: 10.1007/s00603-007-0156-5

37. Whittington, H. W.; McCarter, J.; and Forde, M. C., “The Conduction of Electricity Through Concrete,” Magazine of Concrete Research, V. 33, No. 114, 1981, pp. 48-60. doi: 10.1680/macr.1981.33.114.48

38. Koleva, D. A.; Copuroglu, O.; Van Breugel, K.; Ye, G.; and De Wit, J. H. W., “Electrical Resistivity and Microstructural Properties of Concrete Materials in Conditions of Current Flow,” Cement and Concrete Composites, V. 30, No. 8, 2008, pp. 731-744. doi: 10.1016/j.cemconcomp.2008.04.001

39. Saleem, M.; Shameem, M.; Hussain, S. E.; and Maslehuddin, M., “Effect of Moisture, Chloride and Sulphate Contamination on the Electrical Resistivity of Portland Cement Concrete,” Construction and Building Materials, V. 10, No. 3, 1996, pp. 209-214. doi: 10.1016/0950-0618(95)00078-X

40. Zhang, D.; Cao, Z.; Fan, L.; Liu, S.; and Liu, W., “Evaluation of the Influence of Salt Concentration on Cement Stabilized Clay by Electrical Resistivity Measurement Method,” Engineering Geology, V. 170, 2014, pp. 80-88. doi: 10.1016/j.enggeo.2013.12.010

41. Zornoza, E.; Payá, J.; and Garcés, P., “Chloride-Induced Corrosion of Steel Embedded in Mortars Containing Fly Ash and Spent Cracking Catalyst,” Corrosion Science, V. 50, No. 6, 2008, pp. 1567-1575. doi: 10.1016/j.corsci.2008.02.001

42. Yuan-Hui, L., and Gregory, S., “Diffusion of Ions in Sea Water and in Deep-Sea Sediments,” Geochimica et Cosmochimica Acta, V. 38, No. 5, 1974, pp. 703-714. doi: 10.1016/0016-7037(74)90145-8

43. Santhanam, M.; Cohen, M. D.; and Olek, J., “Mechanism of Sulfate Attack: A Fresh Look: Part 2. Proposed Mechanisms,” Cement and Concrete Research, V. 33, No. 3, 2003, pp. 341-346. doi: 10.1016/S0008-8846(02)00958-4

44. NBR 12655, “Portland Cement Concrete—Preparation, Control, Receipt, and Acceptance Procedure” (in Portuguese: Concreto de cimento Portland—preparo, controle, recebimento e aceitação—procedimento), Brazilian Association of Technical Standards, ABNT, Brazil, 2015.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer