Structural Behavior of Reinforced Infra-Lightweight Concrete (ILC)

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Structural Behavior of Reinforced Infra-Lightweight Concrete (ILC)

Author(s): Alex Hückler and Mike Schlaich

Publication: Structural Journal

Volume: 116

Issue: 2

Appears on pages(s): 3-14

Keywords: beam test; bending; bond; cracks; deformation; ductility; fiberreinforced polymer; infra-lightweight concrete (ILC); tension stiffening

DOI: 10.14359/51712273

Date: 3/1/2019

Abstract:
Infra-lightweight concrete (ILC) is a high-performance lightweight-aggregate concrete (HPLWAC) with a dry density of less than 800 kg/m3 (50 lb/ft3). Such low density means low thermal conductivity (increased thermal resistance [R-value]) and thus allows for monolithic and fair-faced concrete structures without any additional heat insulation. This paper summarizes a comprehensive program that investigated the bond and crack behavior of reinforced ILC as well as the flexural behavior of ILC beams. The scope of experimental tests included 60 reinforced ILC specimens (plus reinforced normal concrete [NC] specimens for reference) for each type: pullout test; tension stiffening test; and beam test. Lightweight concrete (LC) with such low densities shows a linear-elastic behavior and is brittle. Research findings indicate rigid bond properties that bring about favorable crack behavior. The paper describes calculation models for bond, cracks, and bending considering such material behavior. The theoretical and experimental research presented herein also gives insight into the ductility of ILC beams.

Related References:

1. Schlaich, M.; Hillemeier, B.; and Schubert, K., “Infra Lightweight Concrete—Potential for Fair-Faced Concrete Applications? (Infraleichtbeton—Potenzial für den Sichtbeton?),” BFT International, V. 73, No. 2, 2007, pp. 118-119.

2. Leibinger, R.; Schlaich, M.; Lösch, C.; Rieseberg, P.; and Ballestrem, M., “Infraleichtbeton im Geschosswohnungsbau (INBIG): Abschlussbericht (Final Report),” Aktenzeichen: II 3-F20-12-1-145/SWD – 10.08.18.7-13.41, Fraunhofer IRB Verlag, Stuttgart, Germany, 2017, 201 pp.

3. Cassinello, P.; Hückler, A.; and Schlaich, M., “Evolution of Lightweight Concrete: From Eduardo Torroja’s 1949 International Competition to Date,” Eduardo Torroja 1949. Strategy to Industrialise Housing in Post-World War II, P. Cassinello, ed., Madrid, Spain, 2013, pp. 341–352.

4. Schlaich, M., and Hückler, A., “Infraleichtbeton: Reif für die Praxis (Infra-Lightweight Concrete: Ready for Practice),” Beton- und Stahlbetonbau, V. 112, No. 12, 2017, pp. 772-783. doi: 10.1002/best.201700046

5. ACI Committee 213, “Guide for Structural Lightweight-Aggregate Concrete (ACI 213R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 53 pp.

6. DIN Deutsches Institut für Normung e.V., “Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010,” Beuth Verlag, Berlin, Germany, ICS 91.010.30; 91.080.40, DIN EN 1992-1-1:2011, 2011.

7. Lim, H. S.; Wee, T. H.; Islam, M. R.; and Mansur, M. A., “Reinforced Lightweight Concrete Beams in Flexure,” ACI Structural Journal, V. 108, No. 1, Jan.-Feb. 2011, pp. 3-12.

8. Ahmad, S. H., and Barker, R., “Flexural Behavior of Reinforced High-Strength Lightweight Concrete Beams,” ACI Structural Journal, V. 88, No. 1, Jan.-Feb. 1991, pp. 351-358.

9. Hückler, A., “Trag- und Verformungsverhalten von biegebeanspruchten Bauteilen aus Infraleichtbeton (ILC),” dissertation, Sierke Verlag, GÖttingen, Germany, 2016, 90 pp.

10. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 519 pp.

11. RILEM, “Recommendations for the Testing and Use of Constructions Materials,” London, UK, 1994, 618 pp.

12. CEB-FIP, “fib Model Code for Concrete Structures 2010,” Ernst & Sohn, Berlin, 2013, 1 online resource (xxxiii, 436).

13. CEB-FIP, “Lightweight Aggregate Concrete: Recommended Extensions to Model Code 90, Guide; Identification of Research Needs, Technical Report; Case Studies, State-of-art report,” Bulletin 8, fib, Lausanne, Switzerland, 2000, ix, 362 pp.

14. Schöck Bauteile GmbH, “Schöck ComBAR: Technische Information,” Arau, Germany, 2014, https://www.schoeck.de/view/4442/Technische_Information_Schoeck_Combar_%5B4442%5D.pdf. (last accessed Jan. 23, 2019)

15. Bischoff, P. H., “Effects of Shrinkage on Tension Stiffening and Cracking in Reinforced Concrete,” Canadian Journal of Civil Engineering, V. 28, No. 3, 2001, pp. 363-374. doi: 10.1139/l00-117

16. Collins, M. P., and Mitchell, D., Prestressed Concrete Structures, Prentice Hall, Englewood Cliffs, NJ, 1997, 766 pp.

17. Belarbi, A., and Hsu, T. T. C., “Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete,” ACI Structural Journal, V. 91, No. 4, July-Aug. 1994, pp. 465-474.

18. Mörsch, E., “Der Eisenbetonbau. Seine Theorie und Anwendung,” 1. Auflage, Konrad Wittwer Vlg., Stuttgart, Germany, 1908.

19. Wight, J. K., and MacGregor, J. G., Reinforced Concrete: Mechanics and Design, sixth edition, International Edition, Pearson, Boston, MA, 2012, 1175 pp.

20. Zareef, M. E., and Schlaich, M., “Bond Behaviour between GFR Bars and Infra-Lightweight Concrete,” Proceedings of fib Symposium, Amsterdam, the Netherlands, 2008, p. 161.

21. Jaeger, G.; Tadros, G.; and Mufti, A., “Balanced Section, Ductility and Deformability in Concrete with FRP-Reinforcement,” Technical University of Nova Scotia, Halifax, NS, Canada, 1995, 50 pp.

22. Hückler, A., and Schlaich, M., “Bond and Deformation Behaviour of Reinforced Infra-Lightweight Concrete (ILC),” Proceedings of fib Symposium, Copenhagen, Denmark, 2015, pp. 116-117.

23. Schlaich, M., and Zareef, M. E., “Infraleichtbeton (Infra-Lightweight Concrete),” Beton- und Stahlbetonbau, V. 103, No. 3, 2008, pp. 175-182. doi: 10.1002/best.200700605

24. Schlaich, M., and Hückler, A., “Infraleichtbeton 2.0 (Infra-Lightweight Concrete 2.0),” Beton- und Stahlbetonbau, V. 107, No. 11, 2012, pp. 757-766. doi: 10.1002/best.201200033

25. Wischers, G., and Lusche, M., “Einfluß der inneren Spannungsverteilung auf das Tragverhalten von druckbeanspruchten Normal- und Leichtbetonen,” Beton, V. 8, 1972, pp. 343-347.

26. Schöck, “Technical Information Schöck Combar International,” Baden-Baden, 2013.

27. DIN Deutsches Institut für Normung e.V., “Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010,” Beuth Verlag, Berlin, Germany, ICS 91.010.30; 91.080.40, DIN EN 1992-1-1:2011, 2011.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer