Title:
Effect of Granite Waste on Binary Cement Hydration and Paste Performance: Statistical Analysis
Author(s):
G. Medina, I. F. Sáez del Bosque, M. Frías, M. I. Sánchez de Rojas, and C. Medina
Publication:
Materials Journal
Volume:
116
Issue:
1
Appears on pages(s):
63-72
Keywords:
granite; hydration; performance; recycling; statistical analysis
DOI:
10.14359/51710961
Date:
1/1/2019
Abstract:
The cement industry, aware of the environmental benefits of partially replacing clinker with supplementary cementitious materials (SCMs), has been including SCMs in its manufacturing process. This paper analyses the effect of one such material, granite waste, on the hydration and mechanical performance of new blended cements and discusses the results of a multivariate analysis of variance (MANOVA) conducted to ascertain the impact of the factors involved on mechanical strength. The findings showed no differences between the hydration phases present in these and standard cement pastes: the C-S-H gels formed had similar characteristics and mean chain lengths. The pastes bearing 20% granite waste nonetheless exhibited slightly lower mechanical performance, a more refined pore size, and a smaller amount of C-S-H gel than the conventional material. The statistical analysis revealed that the presence of waste and curing age had a significant effect. Interage group differences in mean mechanical performance were found to be more significant at later ages in the additioned than in the unadditioned pastes due primarily to the pozzolanic action of the waste.
Related References:
1. Secretaria Técnica General, “Estadística minera anual 2015,” Ministerio de Energía, Turismo y Agencia Digital, 2015, http://www.minetad.gob.es/energia/mineria/Estadistica/Paginas/Consulta.aspx (last accessed Dec. 12, 2017)
2. Galetakis, M., and Soultana, A., “A Review on the Utilisation of Quarry and Ornamental Stone Industry Fine By-Products in the Construction Sector,” Construction and Building Materials, V. 102, Part 1, 2016, pp. 769-781. doi: 10.1016/j.conbuildmat.2015.10.204
3. Marchán Sanz, C.; Regueiro y González-Barros, M.; and Delgado Arenas, P., “La piedra natural en España: evolución y perspectivas,” Boletín Geológico y Minero, V. 128, No. 2, 2017, pp. 395-403. doi: 10.21701/bolgeomin.128.2.008
4. Rana, A.; Kalla, P.; Verma, H. K.; and Mohnot, J. K., “Recycling of Dimensional Stone Waste in Concrete: A Review,” Journal of Cleaner Production, V. 135, 2016, pp. 312-331. doi: 10.1016/j.jclepro.2016.06.126
5. Singh, S.; Nande, N.; Bansal, P.; and Nagar, R., “Experimental Investigation of Sustainable Concrete Made with Granite Industry By-Product,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 6, 2017, p. 04017017 doi: 10.1061/(ASCE)MT.1943-5533.0001862
6. Abukersh, S. A., and Fairfield, C. A., “Recycled Aggregate Concrete Produced with Red Granite Dust as a Partial Cement Replacement,” Construction and Building Materials, V. 25, No. 10, 2011, pp. 4088-4094. doi: 10.1016/j.conbuildmat.2011.04.047
7. Abd Elmoaty, A. E. M., “Mechanical Properties and Corrosion Resistance of Concrete Modified with Granite Dust,” Construction and Building Materials, V. 47, 2013, pp. 743-752. doi: 10.1016/j.conbuildmat.2013.05.054
8. Marmol, I.; Ballester, P.; Cerro, S.; Monros, G.; Morales, J.; and Sanchez, L., “Use of Granite Sludge Wastes for the Production of Coloured Cement-Based Mortars,” Cement and Concrete Composites, V. 32, No. 8, 2010, pp. 617-622. doi: 10.1016/j.cemconcomp.2010.06.003
9. Ramos, T.; Matos, A. M.; Schmidt, B.; Rio, J.; and Sousa-Coutinho, J., “Granitic Quarry Sludge Waste in Mortar: Effect on Strength and Durability,” Construction and Building Materials, V. 47, 2013, pp. 1001-1009. doi: 10.1016/j.conbuildmat.2013.05.098
10. Medina, G.; Sáez del Bosque, I. F.; Frías, M.; Sánchez de Rojas, M. I.; and Medina, C., “Mineralogical Study of Granite Waste in a Pozzolan/Ca(OH)2 System: Influence of the Activation Process,” Applied Clay Science, V. 135, 2017, pp. 362-371. doi: 10.1016/j.clay.2016.10.018
11. European Standard, “Cement: Composition, Specifications and Conformity Criteria for Common Cements (EN 197-1),” 2011, 50 pp.
12. ASTM D4404-84(2004), “Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry,” ASTM International, West Conshohocken, PA, 2004, 6 pp.
13. Razali, N. M., and Wah, Y. B., “Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests,” Journal of Statistical Modeling and Analytics, V. 2, 2011, pp. 21-33.
14. Shapiro, S. S., and Wilk, M. B., “An Analysis of Variance Test for Normality (Complete Samples)†,” Biometrika, V. 52, No. 3-4, 1965, pp. 591-611. doi: 10.1093/biomet/52.3-4.591
15. Yu, P.; Kirkpatrick, R. J.; Poe, B.; McMillan, P. F.; and Cong, X., “Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy,” Journal of the American Ceramic Society, V. 82, No. 3, 1999, pp. 742-748. doi: 10.1111/j.1151-2916.1999.tb01826.x
16. Trezza, M. A., and Lavat, A. E., “Analysis of the System 3CaO · Al2O3-CaSO4 · 2H2O-CaCO3-H2O by FT-IR Spectroscopy,” Cement and Concrete Research, V. 31, No. 6, 2001, pp. 869-872. doi: 10.1016/S0008-8846(01)00502-6
17. Gadsden, J. A., Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths, London, UK, 1975.
18. Murdoch, J. B.; Stebbins, J. F.; and Carmichael, I. S. E., “High-Resolution 29Si NMR Study of Silicate and Aluminosilicate Glasses; the Effect of Network-Modifying Cations,” The American Mineralogist, V. 70, 1985, pp. 332-343.
19. Engelhardt, G., and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites, John Wiley & Sons, Chischester, UK, 1987.
20. Richardson, I. G.; Brough, A. R.; Brydson, R.; Groves, G. W.; and Dobson, C. M., “Location of Aluminum in Substituted Calcium Silicate Hydrate (C-S-H) Gels as Determined by 29Si and 27Al NMR and EELS,” Journal of the American Ceramic Society, V. 76, No. 9, 1993, pp. 2285-2288. doi: 10.1111/j.1151-2916.1993.tb07765.x
21. Richardson, I. G., “The Nature of the Hydration Products in Hardened Cement Pastes,” Cement and Concrete Composites, V. 22, No. 2, 2000, pp. 97-113. doi: 10.1016/S0958-9465(99)00036-0
22. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Thermal Analysis to Assess Pozzolanic Activity of Calcined Kaolinitic Clays,” Journal of Thermal Analysis and Calorimetry, V. 117, No. 2, 2014, pp. 547-556. doi: 10.1007/s10973-014-3816-1
23. Zhou, Q., and Glasser, F. P., “Thermal Stability and Decomposition Mechanisms of Ettringite at < 120°C,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1333-1339. doi: 10.1016/S0008-8846(01)00558-0
24. Bhatty, J. I., “Hydration versus Strength in a Portland-Cement Developed from Domestic Mineral Wastes—A Comparative Study,” Thermochimica Acta, V. 106, 1986, pp. 93-103. doi: 10.1016/0040-6031(86)85120-6
25. Pane, I., and Hansen, W., “Investigation of Blended Cement Hydration by Isothermal Calorimetry and Thermal Analysis,” Cement and Concrete Research, V. 35, No. 6, 2005, pp. 1155-1164. doi: 10.1016/j.cemconres.2004.10.027
26. Scrivener, K.; Lothenbach, B.; De Belie, N.; Gruyaert, E.; Skibsted, J.; Snellings, R.; and Vollpracht, A., “TC 238-SCM: Hydration and Microstructure of Concrete with SCMs,” Materials and Structures, V. 48, No. 4, 2015, pp. 835-862. doi: 10.1617/s11527-015-0527-4
27. Deboucha, W.; Leklou, N.; Khelidj, A.; and Oudjit, M. N., “Hydration Development of Mineral Additives Blended Cement Using Thermogravimetric Analysis (TGA): Methodology of Calculating the Degree of Hydration,” Construction and Building Materials, V. 146, 2017, pp. 687-701. doi: 10.1016/j.conbuildmat.2017.04.132
28. Galan, I; Andrade, M.; Castellote, M., “Thermogramivetrical Analysis for Monitoring Carbonation of Cementitious Materials. Uptake of CO2 and Deepening in C-S-H Knowledge,” Journal of Thermal Analysis and Calorimetry, V. 110, 2012, pp. 309-319.
29. Baert, G.; Hoste, S.; De Schutter, G.; and De Belie, N., “Reactivity of Fly Ash in Cement Paste Studied by Means of Thermogravimetry and Isothermal Calorimetry,” Journal of Thermal Analysis and Calorimetry, V. 94, No. 2, 2008, pp. 485-492. doi: 10.1007/s10973-007-8787-z
30. Marsh, B. K., and Day, R. L., “Pozzolanic and Cementitious Reactions of Fly-Ash in Blended Cement Pastes,” Cement and Concrete Research, V. 18, No. 2, 1988, pp. 301-310. doi: 10.1016/0008-8846(88)90014-2
31. Taylor, H. F. W., Cement Chemistry, Thomas Telford Publishing, London, UK, 1997.
32. Baquerizo, L. G.; Matschei, T.; Scrivener, K. L.; Saeidpour, M.; and Wadso, L., “Hydration States of AFm Cement Phases,” Cement and Concrete Research, V. 73, 2015, pp. 143-157. doi: 10.1016/j.cemconres.2015.02.011
33. Georgescu, M., and Badanoiu, A., “Hydration Process in 3CaO·SiO2-Silica Fume Mixtures,” Cement and Concrete Composites, V. 19, No. 4, 1997, pp. 295-300. doi: 10.1016/S0958-9465(97)00021-8
34. Saez del Bosque, I. F.; Martinez-Ramirez, S.; and Blanco-Varela, M. T., “Calorimetric Study of the Early Stages of the Nanosilica—Tricalcium Silicate Hydration. Effect of Temperature,” Materiales de Construcción, V. 65, No. 320, 2015, pp. 65-75.
35. Garbev, K.; Bornefeld, M.; Beuchle, G.; and Stemmermann, P., “Cell Dimensions and Composition of Nanocrystalline Calcium Silicate Hydrate Solid Solutions. Part 2: X-Ray and Thermogravimetry Study,” Journal of the American Ceramic Society, V. 91, No. 9, 2008, pp. 3015-3023. doi: 10.1111/j.1551-2916.2008.02601.x
36. Escalante-Garcia, J. I., “Nonevaporable Water from Neat OPC and Replacement Materials in Composite Cements Hydrated at Different Temperatures,” Cement and Concrete Research, V. 33, No. 11, 2003, pp. 1883-1888. doi: 10.1016/S0008-8846(03)00208-4
37. Jain, J., and Neithalath, N., “Physico-chemical Changes in Nano-silica and Silica Fume Modified Cement Pastes in Response to Leaching,” International Journal of Materials and Structural Integrity, V. 3, No. 2/3, 2009, pp. 114-133. doi: 10.1504/IJMSI.2009.028608
38. Tixier, R.; Devaguptapu, R.; and Mobasher, B., “The Effect of Copper Slag on the Hydration and Mechanical Properties of Cementitious Mixtures,” Cement and Concrete Research, V. 27, No. 10, 1997, pp. 1569-1580. doi: 10.1016/S0008-8846(97)00166-X
39. Lilkov, V., and Stoitchkov, V., “Effect of the ‘Pozzolit’ Active Mineral Admixture on the Properties of Cement Mortars and Concretes. 2. Pozzolanic Activity,” Cement and Concrete Research, V. 26, No. 7, 1996, pp. 1073-1081. doi: 10.1016/0008-8846(96)00082-8
40. Chaipanich, A., and Nochaiya, T., “Thermal Analysis and Microstructure of Portland Cement-Fly Ash-Silica Fume Pastes,” Journal of Thermal Analysis and Calorimetry, V. 99, No. 2, 2010, pp. 487-493. doi: 10.1007/s10973-009-0403-y
41. Bediacko, M.; Shirkant, S.; and Tristan, J., “Investigation into Ghanaian Calcined Clay as Supplementary Cementitious Materials,” ACI Materials Journal, V. 114, No. 6, Nov.-Dec. 2017, pp. 889-896.
42. El-Gamal, S. M. A.; El-Hosiny, F. I.; Amin, M. S.; and Sayed, D. G., “Ceramic Waste as an Efficient Material for Enhancing the Fire Resistance and Mechanical Properties of Hardened Portland Cement Pastes,” Construction and Building Materials, V. 154, 2017, pp. 1062-1078. doi: 10.1016/j.conbuildmat.2017.08.040
43. Schuldyakov, K. V.; Kramar, L. Y.; and Trofimov, B. Y., “The Properties of Slag Cement and Its Influence on the Structure of the Hardened Cement Paste,” 2nd International Conference on Industrial Engineering (Icie-2016), 2016, pp. 1433-1439.
44. Lizarazo-Marriaga, J.; Claisse, P.; and Ganjian, E., “Effect of Steel Slag and Portland Cement in the Rate of Hydration and Strength of Blast Furnace Slag Pastes,” Journal of Materials in Civil Engineering, ASCE, V. 23, No. 2, 2011, pp. 153-160. doi: 10.1061/(ASCE)MT.1943-5533.0000149
45. Soria Santamaria, F., “Las puzolanas y el ahorro energético en los materiales de construcción,” Materiales de Construcción, V. 33, No. 190-191, 1983, pp. 69-84. doi: 10.3989/mc.1983.v33.i190-191.974
46. Sánchez de Rojas, M. I.; Frias, M.; Rodriguez, O.; and Rivera, J., “Durability of Blended Cement Pastes Containing Ceramic Waste as a Pozzolanic Addition,” Journal of the American Ceramic Society, V. 97, No. 5, 2014, pp. 1543-1551. doi: 10.1111/jace.12882
47. Yu, Z.; Ma, J.; Ye, G.; van Breugel, K.; and Shen, X., “Effect of Fly Ash on the Pore Structure of Cement Paste under a Curing Period of 3 Years,” Construction and Building Materials, V. 144, 2017, pp. 493-501. doi: 10.1016/j.conbuildmat.2017.03.182
48. Yu, Z. Q., and Ye, G., “The Pore Structure of Cement Paste Blended with Fly Ash,” Construction and Building Materials, V. 45, 2013, pp. 30-35. doi: 10.1016/j.conbuildmat.2013.04.012
49. Hewlett, P. C., Lea’s Chemistry of Cement and Concrete, London, UK, 1998, 1053 pp.
50. Baeza, F.; Paya, J.; Galao, O.; Saval, J. M.; and Garces, P., “Blending of Industrial Waste from Different Sources as Partial Substitution of Portland Cement in Pastes and Mortars,” Construction and Building Materials, V. 66, 2014, pp. 645-653. doi: 10.1016/j.conbuildmat.2014.05.089