Polypropylene Glycols as Effective Shrinkage-Reducing Admixtures in Alkali-Activated Materials

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Polypropylene Glycols as Effective Shrinkage-Reducing Admixtures in Alkali-Activated Materials

Author(s): Lukáš Kalina, Vlastimil Bílek Jr., Eva Bartonícˇ ková, and Jitka Krouská

Publication: Materials Journal

Volume: 115

Issue: 2

Appears on pages(s): 251-256

Keywords: alkali-activated materials; chemical admixtures; shrinkage reduction

DOI: 10.14359/51701099

Date: 3/1/2018

Abstract:
In recent years, the use of various nontraditional cements and composites has increased. Alkali-activated materials, especially those based on alkali activation of blast-furnace slag, have considerable potential in construction industry. However, alkali-activated slag binders exhibit significant shrinkage, in some circumstances several times greater than portland cement-based materials, which hinders wider use of these materials in numerous applications. Therefore, the use of specific admixtures suitable for alkaliactivated systems is necessary. This paper is consequently focused on testing the efficiency of shrinkage-reducing additives based on polypropylene glycols, as well as their influence on the hydration mechanism and mechanical properties of prepared alkali-activated materials.

Related References:

1. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, New York, 2013, 704 pp.

2. Puertas, F.; Gutiérrez, R.; Fernández-Jiménez, A.; Delvasto, S.; and Maldonado, J., “Alkaline Cement Mortars. Chemical Resistance to Sulfate and Seawater Attack,” Materiales de Construcción, V. 52, No. 267, 2002, pp. 55-71. (in Spanish) doi: 10.3989/mc.2002.v52.i267.326

3. Fernández-Jiménez, A.; Palomo, J. G.; and Puertas, F., “Alkali-Activated Slag Mortars,” Cement and Concrete Research, V. 29, No. 8, 1999, pp. 1313-1321. doi: 10.1016/S0008-8846(99)00154-4

4. Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; and Sanz, J., “Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator,” Journal of the American Ceramic Society, V. 86, No. 8, 2003, pp. 1389-1394. doi: 10.1111/j.1151-2916.2003.tb03481.x

5. Bernal, S. A., and Provis, J. L., “Durability of Alkali-Activated Materials: Progress and Perspectives,” Journal of the American Ceramic Society, V. 97, No. 4, 2014, pp. 997-1008. doi: 10.1111/jace.12831

6. Wang, W. C.; Wang, H. Y.; and Lo, M. H., “The Engineering Properties of Alkali-Activated Slag Pastes Exposed to High Temperatures,” Construction and Building Materials, V. 68, 2014, pp. 409-415. doi: 10.1016/j.conbuildmat.2014.06.016

7. San Nicolas, R.; Bernal, S. A.; Mejía de Gutiérrez, R.; van Deventer, J. S. J.; and Provis, J. L., “Distinctive Microstructural Features of Aged Sodium Silicate-Activated Slag Concretes,” Cement and Concrete Research, V. 65, Nov, 2014, pp. 41-51. doi: 10.1016/j.cemconres.2014.07.008

8. Kalina, L.; Bilek, V.; Novotny, R.; Moncekova, M.; Masilko, J.; and Koplik, J., “Effect of Na3PO4 on the Hydration Process of Alkali-Activated Blast Furnace Slag,” Materials (Basel), V. 9, No. 12, 2016, p. 395 doi: 10.3390/ma9050395

9. Melo Neto, A. A.; Cincotto, M. A.; and Repette, W., “Drying and Autogenous Shrinkage of Pastes and Mortars with Activated Slag Cement,” Cement and Concrete Research, V. 38, No. 4, 2008, pp. 565-574. doi: 10.1016/j.cemconres.2007.11.002

10. Collins, F., and Sanjayan, J. G., “Effect of Pore Size Distribution on Drying Shrinkage of Alkali-Activated Slag Concrete,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1401-1406. doi: 10.1016/S0008-8846(00)00327-6

11. Krizan, D., and Zivanovic, B., “Effects of Dosage and Modulus of Water Glass on Early Hydration of Alkali-Slag Cements,” Cement and Concrete Research, V. 32, No. 8, 2002, pp. 1181-1188. doi: 10.1016/S0008-8846(01)00717-7

12. Ye, H. L.; Cartwright, C.; Rajabipour, F.; and Radlinska, A., “Understanding the Drying Shrinkage Performance of Alkali-Activated Slag Mortars,” Cement and Concrete Composites, V. 76, Feb. 2017, pp. 13-24. doi: 10.1016/j.cemconcomp.2016.11.010

13. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y. B., “Effect of Admixtures on Properties of Alkali-Activated Slag Concrete,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1367-1374. doi: 10.1016/S0008-8846(00)00349-5

14. Palacios, M., and Puertas, F., “Effect of Shrinkage-Reducing Admixtures on the Properties of Alkali-Activated Slag Mortars and Pastes,” Cement and Concrete Research, V. 37, No. 5, 2007, pp. 691-702. doi: 10.1016/j.cemconres.2006.11.021

15. Bilim, C.; Karahan, O.; Atis, C. D.; and Ilkentapar, S., “Effects of Chemical Admixtures and Curing Conditions on Some Properties of Alkali-Activated Cementless Slag Mixtures,” KSCE Journal of Civil Engineering, V. 19, No. 3, 2015, pp. 733-741. doi: 10.1007/s12205-015-0629-0

16. Aïtcin, P. C., and Flatt, R. J., Science and Technology of Concrete Admixtures, Elsevier Science, Amsterdam, the Netherlands, 2015, 666 pp.

17. Bílek, V.; Kalina, L.; Novotny, R.; Tkacz, J.; and Parizek, L., “Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems,” Materials (Basel), V. 9, No. 12, 2016, p. 462 doi: 10.3390/ma9060462

18. Kalina, L.; Bílek, V.; Šoukal, F.; and Opravil, T., “Recycling of Waste Technological Sludge in Alkali-Activated Concretes,” Recycling of Waste Technological Sludge in Alkali-Activated Concretes, fédération internationale du béton, Lausanne, Switzerland, 2016, 635 pp.

19. Smit, B.; Schlijper, A. G.; Rupert, L. A. M.; and Vanos, N. M., “Effects of Chain-Length of Surfactants on the Interfacial-Tension—Molecular Dynamics Simulations and Experiments,” Journal of Physical Chemistry, V. 94, No. 18, 1990, pp. 6933-6935. doi: 10.1021/j100381a003

20. Szleifer, I.; Benshaul, A.; and Gelbart, W. M., “Chain Packing Statistics and Thermodynamics of Amphiphile Monolayers,” Journal of Physical Chemistry, V. 94, No. 12, 1990, pp. 5081-5089. doi: 10.1021/j100375a060

21. Lundberg, L., and Edholm, O., “Dispersion Corrections to the Surface Tension at Planar Surfaces,” Journal of Chemical Theory and Computation, V. 12, No. 8, 2016, pp. 4025-4032. doi: 10.1021/acs.jctc.6b00182

22. Kunz, W.; Henle, J.; and Ninham, B. W., “Zur Lehre von der Wirkung der Salze (About the Science of the Effect of Salts): Franz Hofmeister’s Historical Papers,” Current Opinion in Colloid & Interface Science, V. 9, No. 1-2, 2004, pp. 19-37. doi: 10.1016/j.cocis.2004.05.005

23. Rajabipour, F.; Sant, G.; and Weiss, J., “Interactions between Shrinkage Reducing Admixtures (SRA) and Cement Paste’s Pore Solution,” Cement and Concrete Research, V. 38, No. 5, 2008, pp. 606-615. doi: 10.1016/j.cemconres.2007.12.005

24. Seguin, C.; Eastoe, J.; Clapperton, R.; Heenan, R. K.; and Grillo, I., “Alternative Non-Aqueous Water-Miscible Solvents for Surfactants,” Colloids and Surfaces a-Physicochemical and Engineering Aspects, V. 282, July 2006, pp. 134-142.

25. Mindess, S., and Young, J. F., Concrete, Prentice-Hall, Upper Saddle River, NJ, 1981, 671 pp.

26. Shi, C. J.; Day, R. L.; Wu, X. Q.; and Tang, M. S., “Uptake of Metal Ions by Autoclaved Cement Pastes,” Advanced Cementitious Systems: Mechanisms and Properties, V. 245, 1992, pp. 141-149.

27. Shi, C. J., and Day, R. L., “A Calorimetric Study of Early Hydration of Alkali-Slag Cements,” Cement and Concrete Research, V. 25, No. 6, 1995, pp. 1333-1346. doi: 10.1016/0008-8846(95)00126-W

28. Brough, A. R., and Atkinson, A., “Sodium Silicate-Based, Alkali-Activated Slag Mortars,” Cement and Concrete Research, V. 32, No. 6, 2002, pp. 865-879. doi: 10.1016/S0008-8846(02)00717-2


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer