Title:
Carbonation Study of Cement-Based Material by Electrochemical Impedance Method
Author(s):
Qiwen Qiu, Zhentao Gu, Jiaqi Xiang, Canjie Huang, and Biqin Dong
Publication:
Materials Journal
Volume:
114
Issue:
4
Appears on pages(s):
605-617
Keywords:
carbonation; carbonation depth; cement-based material; durability; electrochemical impedance spectroscopy; equivalent circuit model; nondestructive evaluation; prediction
DOI:
10.14359/51689778
Date:
7/1/2017
Abstract:
Electrochemical impedance spectroscopy (EIS) is adopted in this study for assessing the carbonation behavior of cement-based materials, including ordinary portland-cement paste, cement mortars, and blended cements with fly ash and slag. A new equivalent circuit model was proposed and demonstrated for satisfactory interpretation of impedance spectrum of cement-based materials affected by carbonation. Experimental results show that carbonation can increase the diameter of impedance curve for all the cement-based materials. The type of cement-based material has great impact on carbonation process, which can be distinguished from the measured impedance spectrum. Functional relationships among charge transfer resistance, carbonation time, and carbonation depth are obtained, which can provide an effective way to predict the carbonation depth of various types of cement-based materials. This research’s findings demonstrate that EIS method has a robust capacity for carbonation assessment and it is expected to complement the existing testing standards for the durability evaluation of construction materials.
Related References:
1. Villain, G., and Platret, G., “Two Experimental Methods to Determine Carbonation Profiles in Concrete,” ACI Materials Journal, V. 103, No. 4, July-Aug. 2006, pp. 265-271.
2. Zhang, D., and Shao, Y., “Early Age Carbonation Curing for Precast Reinforced Concretes,” Construction and Building Materials, V. 113, 2016, pp. 134-143. doi: 10.1016/j.conbuildmat.2016.03.048
3. Peter, M.; Muntean, A.; Meier, S.; and Böhm, M., “Competition of Several Carbonation Reactions in Concrete: A Parametric Study,” Cement and Concrete Research, V. 38, No. 12, 2008, pp. 1385-1393. doi: 10.1016/j.cemconres.2008.09.003
4. Mo, L., and Panesar, D., “Accelerated Carbonation—A Potential Approach to Sequester CO2 in Cement Paste Containing Slag and Reactive mgo,” Cement and Concrete Composites, V. 43, 2013, pp. 69-77. doi: 10.1016/j.cemconcomp.2013.07.001
5. Liu, J.; Qiu, Q.; Chen, X.; Wang, X.; Xing, F.; Han, N.; and He, Y., “Degradation of Fly Ash Concrete under the Coupled Effect of Carbonation and Chloride Aerosol Ingress,” Corrosion Science, V. 112, 2016, pp. 364-372. doi: 10.1016/j.corsci.2016.08.004
6. Giarma, C., “Estimation of Carbonation Depth Based on Hygrothermal Calculations,” ACI Materials Journal, V. 108, No. 2, Mar.-Apr. 2011, pp. 209-218.
7. Czarnecki, L., and Woyciechowski, P., “Concrete Carbonation as a Limited Process and its Relevance to Concrete Cover Thickness,” ACI Materials Journal, V. 109, No. 3, May-June 2012, pp. 275-282.
8. Morandeau, A.; Thiéry, M.; and Dangla, P., “Impact of Accelerated Carbonation on OPC Cement Paste Blended with Fly Ash,” Cement and Concrete Research, V. 67, 2015, pp. 226-236. doi: 10.1016/j.cemconres.2014.10.003
9. Bouchaala, F.; Payan, C.; Garnier, V.; and Balayssac, J., “Carbonation Assessment in Concrete by Nonlinear Ultrasound,” Cement and Concrete Research, V. 41, No. 5, 2011, pp. 557-559. doi: 10.1016/j.cemconres.2011.02.006
10. Sisomphon, K., and Franke, L., “Carbonation Rates of Concretes Containing High Volume of Pozzolanic Materials,” Cement and Concrete Research, V. 37, No. 12, 2007, pp. 1647-1653. doi: 10.1016/j.cemconres.2007.08.014
11. Ngala, V. T., and Page, C. L., “Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Cement Pastes,” Cement and Concrete Research, V. 27, No. 7, 1997, pp. 995-1007. doi: 10.1016/S0008-8846(97)00102-6
12. Castellote, M., and Andrade, C., “Modelling the Carbonation of Cementitious Matrixes by Means of the Unreacted-Core Model, UR-CORE,” Cement and Concrete Research, V. 38, No. 12, 2008, pp. 1374-1384. doi: 10.1016/j.cemconres.2008.07.004
13. García-González, C. A.; Hidalgo, A.; Andrade, C.; Alonso, M. C.; Fraile, J.; López-Periago, A. M.; and Domingo, C., “Modification of Composition and Microstructure of Portland Cement Pastes as a Result of Natural and Supercritical Carbonation Procedures,” Industrial & Engineering Chemistry Research, V. 45, No. 14, 2006, pp. 4985-4992. doi: 10.1021/ie0603363
14. Johannesson, B., and Utgenannt, P., “Microstructural Changes Caused by Carbonation of Cement Mortar,” Cement and Concrete Research, V. 31, No. 6, 2001, pp. 925-931. doi: 10.1016/S0008-8846(01)00498-7
15. Liu, W.; Cui, H.; Dong, Z.; Xing, F.; Zhang, H.; and Lo, T. Y., “Carbonation of Concrete Made with Dredged Marine Sand and its Effect on Chloride Binding,” Construction and Building Materials, V. 120, 2016, pp. 1-9. doi: 10.1016/j.conbuildmat.2016.05.011
16. Khunthongkeaw, J.; Tangtermsirikul, S.; and Leelawat, T., “A Study on Carbonation Depth Prediction for Fly Ash Concrete,” Construction and Building Materials, V. 20, No. 9, 2006, pp. 744-753. doi: 10.1016/j.conbuildmat.2005.01.052
17. Sulapha, P.; Wong, S. F.; Wee, T. H.; and Swaddiwudhipong, S., “Carbonation of Concrete Containing Mineral Admixtures,” Journal of Materials in Civil Engineering, ASCE, V. 15, No. 2, 2003, pp. 134-143. doi: 10.1061/(ASCE)0899-1561(2003)15:2(134)
18. Kulakowski, M. P.; Pereira, F. M.; and Molin, D. C. C. D., “Carbonation-Induced Reinforcement Corrosion in Silica Fume Concrete,” Construction and Building Materials, V. 23, No. 3, 2009, pp. 1189-1195. doi: 10.1016/j.conbuildmat.2008.08.005
19. Papadakis, V. G.; Fardis, M. N.; and Vayenas, C. G., “Hydration and Carbonation of Pozzolanic Cements,” ACI Materials Journal, V. 89, No. 2, Mar.-Apr. 1992, pp. 119-130.
20. Demis, S., and Papadakis, V. G., “A Software-Assisted Comparative Assessment of the Effect of Cement Type on Concrete Carbonation and Chloride Ingress,” Computers and Concrete, V. 10, No. 4, 2012, pp. 391-407. doi: 10.12989/cac.2012.10.4.391
21. Chinchón-Payá, S.; Andrade, C.; and Chinchón, S., “Indicator of Carbonation Front in Concrete as Substitute to Phenolphthalein,” Cement and Concrete Research, V. 82, 2016, pp. 87-91. doi: 10.1016/j.cemconres.2015.12.010
22. Chang, C.-F., and Chen, J.-W., “The Experimental Investigation of Concrete Carbonation Depth,” Cement and Concrete Research, V. 36, No. 9, 2006, pp. 1760-1767. doi: 10.1016/j.cemconres.2004.07.025
23. Saetta, A., and Vitaliani, R., “Experimental Investigation and Numerical Modeling of Carbonation Process in Reinforced Concrete Structures,” Cement and Concrete Research, V. 35, No. 5, 2005, pp. 958-967.
24. Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Xing, F.; Han, N.; and Lu, Y., “Electrochemical Impedance Measurement and Modeling Analysis of the Carbonation Behavior for Cementititous Materials,” Construction and Building Materials, V. 54, 2014, pp. 558-565. doi: 10.1016/j.conbuildmat.2013.12.100
25. Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Sun, H.; Xing, F.; and Liu, W., “Electrochemical Impedance Interpretation of the Carbonation Behavior for Fly Ash-Slag-Cement Materials,” Construction and Building Materials, V. 93, 2015, pp. 933-942. doi: 10.1016/j.conbuildmat.2015.05.066
26. ASTM D4262-05(2012), “Standard Test Method for ph of Chemically Cleaned or Etched Concrete Surfaces,” ASTM International, West Conshohocken, PA, 2012, 2 pp.
27. Heng, M., and Murata, K., “Aging of Concrete Buildings and Determining the ph Value on the Surface of Concrete by Using a Handy Semi-Conductive ph Meter,” Analytical Sciences, V. 20, No. 7, 2004, pp. 1087-1090. doi: 10.2116/analsci.20.1087
28. Anstice, D. J.; Page, C. L.; and Page, M. M., “The Pore Solution Phase of Carbonated Cement Pastes,” Cement and Concrete Research, V. 35, No. 2, 2005, pp. 377-383. doi: 10.1016/j.cemconres.2004.06.041
29. Liu, J.; Qiu, Q.; Chen, X.; Xing, F.; Han, N.; He, Y.; and Ma, Y., “Understanding the Interacted Mechanism between Carbonation and Chloride Aerosol Attack in Ordinary Portland Cement Concrete,” Cement and Concrete Research, V. 95, May, 2017, pp. 217-225. doi: 10.1016/j.cemconres.2017.02.032
30. Aperador, W.; Bautista, J.; and Vera, E., “Mossbauer and XRD Analysis of Corrosion Products of Carbonated Alkali-Activated Slag Reinforced Concretes,” Dyna (Bilbao), V. 78, No. 170, 2011, pp. 198-203.
31. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y.-B., “Resistance of Alkali-Activated Slag Concrete to Carbonation,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1277-1283. doi: 10.1016/S0008-8846(01)00574-9
32. Yoon, I.-S.; Çopuroğlu, O.; and Park, K.-B., “Effect of Global Climatic Change on Carbonation Progress of Concrete,” Atmospheric Environment, V. 41, No. 34, 2007, pp. 7274-7285. doi: 10.1016/j.atmosenv.2007.05.028
33. Vazquez, D. R.; Zaccardi, Y. A. V.; Zega, C. J.; Sosa, M. E.; and Duffó, G. S., “Implementation of Different Techniques for Monitoring the Corrosion of Rebars Embedded in Concretes Made with Ordinary and Pozzolanic Cements,” Procedia Materials Science, V. 8, 2015, pp. 73-81. doi: 10.1016/j.mspro.2015.04.050
34. Song, G., “Equivalent Circuit Model for AC Electrochemical Impedance Spectroscopy of Concrete,” Cement and Concrete Research, V. 30, No. 11, 2000, pp. 1723-1730. doi: 10.1016/S0008-8846(00)00400-2
35. Macdonald, D., “Reflections on the History of Electrochemical Impedance Spectroscopy,” Electrochimica Acta, V. 51, No. 8-9, 2006, pp. 1376-1388. doi: 10.1016/j.electacta.2005.02.107
36. Xiong, C.; Jiang, L.; Zhang, Y.; Chu, H.; and Jiang, P., “Characterization of Sulfate Diffusion into Cement Paste by Low Frequency Impedance Spectroscopy,” Materials Letters, V. 174, 2016, pp. 234-237. doi: 10.1016/j.matlet.2016.03.131
37. Ortega, J.; Sánchez, I.; and Climent, M., “Impedance Spectroscopy Study of the Effect of Environmental Conditions in the Microstructure Development of OPC and Slag Cement Mortars,” Archives of Civil and Mechanical Engineering, V. 15, No. 2, 2015, pp. 569-583. Doi: 10.1016/j.acme.2014.06.002
38. Xing, F.; Dong, B.; and Li, Z., “Impedance Spectroscopic Studies of Cement-Based Piezoelectric Ceramic Composites,” Composites Science and Technology, V. 68, No. 12, 2008, pp. 2456-2460. doi: 10.1016/j.compscitech.2008.04.024
39. Cabeza, M.; Merino, P.; Miranda, A.; No’voa, X. R.; and Sanchez, I., “Impedance Spectroscopy Study of Hardened Portland Cement Paste,” Cement and Concrete Research, V. 32, No. 6, 2002, pp. 881-891. doi: 10.1016/S0008-8846(02)00720-2
40. Vig, A.; Radoi, A.; Muñoz-Berbel, X.; Gyemant, G.; and Marty, J.-L., “Impedimetric Aflatoxin M1 Immunosensor Based on Colloidal Gold and Silver Electrodeposition,” Sensors and Actuators. B, Chemical, V. 138, No. 1, 2009, pp. 214-220. doi: 10.1016/j.snb.2008.12.033
41. Ding, L.; Du, D.; Wu, J.; and Ju, H., “A Disposable Impedance Sensor for Electrochemical Study and Monitoring of Adhesion and Proliferation of K562 Leukaemia cells,” Electrochemistry Communications, V. 9, No. 5, 2007, pp. 953-958. doi: 10.1016/j.elecom.2006.11.040
42. Dong, B.; Qiu, Q.; Gu, Z.; Xiang, J.; Huang, C.; Fang, Y.; Xing, F.; and Liu, W., “Characterization of Carbonation Behavior of Fly Ash Blended Cement Materials by the Electrochemical Impedance Spectroscopy Method,” Cement and Concrete Composites, V. 65, 2016, pp. 118-127. doi: 10.1016/j.cemconcomp.2015.10.006
43. Dong, B.; Qiu, Q.; Xiang, J.; Huang, C.; Xing, F.; and Han, N., “Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy,” Materials (Basel), V. 7, No. 1, 2014, pp. 218-231. doi: 10.3390/ma7010218
44. Song, Z.; Jiang, L.; Li, W.; Xiong, C.; and Chu, H., “Impact of Compressive Fatigue on Chloride Diffusion Coefficient in OPC Concrete: An Analysis Using EIS Method,” Construction and Building Materials, V. 113, 2016, pp. 712-720. doi: 10.1016/j.conbuildmat.2016.03.108
45. Ribeiro, D., and Abrantes, J., “Application of Electrochemical Impedance Spectroscopy (EIS) to Monitor the Corrosion of Reinforced Concrete: A New Approach,” Construction and Building Materials, V. 111, 2016, pp. 98-104. doi: 10.1016/j.conbuildmat.2016.02.047
46. GB175-2007, “Common Portland Cement,” Standardization Administration of China, Beijing, China, 2007, 4 pp.
47. ASTM C150/C150M-16e1, “Standard Specification for Portland Cement,” ASTM International, West Conshohocken, PA, 2016, 10 pp.
48. GB/T 1596-2005, “Fly Ash Used for Cement and Concrete,” Standardization Administration of China, Beijing, China, 2005, 5 pp.
49. GB/T 18046-2008, “Ground Granulated Blast Furnace Slag Used for Cement and Concrete,” Standardization Administration of China, Beijing, China, 2008, 4 pp.
50. ASTM C618-15, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2015, 5 pp.
51. ASTM C989/C989M-16, “Standard Specification for Slag Cement for Use in Concrete and Mortars, ASTM International, West Conshohocken, PA, 2016, 7 pp.
52. Papadakis, V. G.; Vayenas, C. G.; and Fardis, M. N., “Fundamental Modeling and Experimental Investigation of Concrete Carbonation,” ACI Materials Journal, V. 88, No. 4, July-Aug. 1991, pp. 363-373.
53. Herrera, R.; Kinrade, S. D.; and Catalan, L. J. J., “A Comparison of Methods for Determining Carbonation Depth in Fly-Ash Blended Cement Mortars,” ACI Materials Journal, V. 112, No. 2, Mar.-Apr. 2015, pp. 287-294. doi: 10.14359/51687452
54. Li, G.; Hu, H.; and Ren, C., “Resistance of Segmental Joints to Carbonation,” ACI Materials Journal, V. 114, No. 1, Jan.-Feb. 2017, pp. 137-148. doi: 10.14359/51689487
55. GB/T 50082-2009, “Standard Testing Method of Testing Ordinary Concrete Long Term Performance and Durability,” Standardization Administration of China, Beijing, China, 2009, pp. 61-63.
56. Živcová, Z.; Petrák, V.; Frank, O.; and Kavan, L., “Electrochemical Impedance Spectroscopy of Polycrystalline Boron Doped Diamond Layers with Hydrogen and Oxygen Terminated Surface,” Diamond and Related Materials, V. 55, 2015, pp. 70-76. doi: 10.1016/j.diamond.2015.03.002
57. Živcová, Z.; Frank, O.; Petrák, V.; Tarábková, H.; Vacík, J.; Nesládek, M.; and Kavan, L., “Electrochemistry and In-Situ Raman Spectroelectrochemistry of Low and High Quality Boron Doped Diamond Layers in Aqueous Electrolyte Solution,” Electrochimica Acta, V. 87, No. 1, 2015, pp. 518-525.
58. Haeri, M.; Goldberg, S.; and Gilbert, J., “The Voltage-Dependent Electrochemical Impedance Spectroscopy of cocrmo Medical Alloy Using Time-Domain Techniques: Generalized Cauchy-Lorentz, and KWW-Randles Functions Describing Non-ideal Interfacial Behaviour,” Corrosion Science, V. 53, No. 2, 2011, pp. 582-588. doi: 10.1016/j.corsci.2010.09.067
59. Randles, J. E. B., “Kinetics of Rapid Electrode Reactions,” Discussions of the Faraday Society, V. 1, 1947, pp. 11-19. doi: 10.1039/df9470100011
60. Bisquert, J., “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer,” The Journal of Physical Chemistry B, V. 106, No. 2, 2002, pp. 325-333. doi: 10.1021/jp011941g
61. Skale, S.; Doleček, V.; and Slemnik, M., “Substitution of the Constant Phase Element by Warburg Impedance for Protective Coatings,” Corrosion Science, V. 49, No. 3, 2007, pp. 1045-1055. doi: 10.1016/j.corsci.2006.06.027
62. Shi, M.; Chen, Z.; and Sun, J., “Determination of Chloride Diffusivity in Concrete by AC Impedance Spectroscopy,” Cement and Concrete Research, V. 29, No. 7, 1999, pp. 1111-1115. doi: 10.1016/S0008-8846(99)00079-4
63. Xie, P.; Gu, P.; Xu, Z.; and Beaudoin, J., “A Rationalized A.C. Impedence Model for Microstructural Characterization of Hydrating Cement Systems,” Cement and Concrete Research, V. 23, No. 2, 1993, pp. 359-367. doi: 10.1016/0008-8846(93)90101-E
64. Gu, P.; Xie, P.; Beaudoin, J.; and Brousseau, R., “A.C. Impedance Spectroscopy (i): A New Equivalent Circuit Model for Hydrated Portland Cement Paste,” Cement and Concrete Research, V. 22, No. 5, 1992, pp. 833-840. doi: 10.1016/0008-8846(92)90107-7
65. Wang, G.; Xu, J.-J.; and Chen, H.-Y., “Interfacing Cytochrome c to Electrodes with a DNA-Carbon Nanotube Composite Film,” Electrochemistry Communications, V. 4, No. 6, 2002, pp. 506-509. doi: 10.1016/S1388-2481(02)00360-0
66. Yang, L.; Li, Y.; and Erf, G. F., “Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of escherichia coli O157:H7,” Analytical Chemistry, V. 76, No. 4, 2004, pp. 1107-1113. doi: 10.1021/ac0352575
67. Snyder, K. A.; Feng, X.; Keen, B. D.; and Mason, T. O., “Estimating the Electrical Conductivity of Cement Paste Pore Solutions from OH–, K+ and Na+ Concentrations,” Cement and Concrete Research, V. 33, No. 6, 2003, pp. 793-798. Doi: 10.1016/S0008-8846(02)01068-2
68. Tong, L., and Gjørv, O. E., “Chloride Diffusivity Based on Migration Testing,” Cement and Concrete Research, V. 31, No. 7, 2001, pp. 973-982. doi: 10.1016/S0008-8846(01)00525-7
69. Angst, U.; Elsener, B.; Larsen, C. K.; and Vennesland, Ø., “Critical Chloride Content in Reinforced Concrete—A Review,” Cement and Concrete Research, V. 39, No. 12, 2009, pp. 1122-1138. doi: 10.1016/j.cemconres.2009.08.006
70. Diaz, B.; No’voa, X. R.; and Pérez, M. C., “Study of the Chloride Diffusion in Mortar: A New Method of Determining Diffusion Coefficients Based on Impedance Measurements,” Cement and Concrete Composites, V. 28, No. 3, 2006, pp. 237-245. doi: 10.1016/j.cemconcomp.2006.01.009
71. Jain, J. A., and Neithalath, N., “Chloride Transport in Fly Ash and Glass Powder Modified Concretes—Influence of Test Methods on Microstructure,” Cement and Concrete Composites, V. 32, No. 2, 2010, pp. 148-156. Doi: 10.1016/j.cemconcomp.2009.11.010
72. Sullivan-Green, L.; Hime, W.; and Dowding, C., “Accelerated Protocol for Measurement of Carbonation through a Crack Surface,” Cement and Concrete Research, V. 37, No. 6, 2007, pp. 916-923. doi: 10.1016/j.cemconres.2007.02.019
73. Liu, J.; Qiu, Q.; Xing, F.; and Pan, D., “Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete,” Materials (Basel), V. 7, No. 6, 2014, pp. 4282-4296. doi: 10.3390/ma7064282
74. Silva, R.; Neves, R.; de Brito, J.; and Dhir, R. K., “Carbonation Behaviour of Recycled Aggregate Concrete,” Cement and Concrete Composites, V. 62, 2015, pp. 22-32. doi: 10.1016/j.cemconcomp.2015.04.017
75. Shaikh, F. U. A., and Supit, S. W. M., “Chloride Induced Corrosion Durability of High Volume Fly Ash Concretes,” Construction and Building Materials, V. 99, 2015, pp. 208-225. doi: 10.1016/j.conbuildmat.2015.09.030
76. Velázquez, S.; Monzó, J.; Borrachero, M. V.; Soriano, L.; and Payá, J., “Evaluation of the Pozzolanic Activity of Spent FCC Catalyst/Fly Ash Mixtures in Portland Cement Pastes,” Thermochimica Acta, V. 632, 2016, pp. 29-36. doi: 10.1016/j.tca.2016.03.011
77. Hills, T.; Gordon, F.; Florin, N.; and Fennell, P., “Statistical Analysis of the Carbonation Rate of Concrete,” Cement and Concrete Research, V. 72, 2015, pp. 98-107. doi: 10.1016/j.cemconres.2015.02.007
78. Leemann, A.; Nygaard, P.; Kaufmann, J.; and Loser, R., “Relation between Carbonation Resistance, Mix Design and Exposure of Mortar and Concrete,” Cement and Concrete Composites, V. 62, 2015, pp. 33-43. doi: 10.1016/j.cemconcomp.2015.04.020
79. Neves, R.; Branco, F.; and de Brito, J., “Field Assessment of the Relationship between Natural and Accelerated Concrete Carbonation Resistance,” Cement and Concrete Composites, V. 41, 2013, pp. 9-15. doi: 10.1016/j.cemconcomp.2013.04.006
80. Gruyaert, E.; Van den Heede, P.; and De Belie, N., “Carbonation of Slag Concrete: Effect of the Cement Replacement Level and Curing on the Carbonation Coefficient—Effect of Carbonation on the Pore Structure,” Cement and Concrete Composites, V. 35, No. 1, 2013, pp. 39-48. doi: 10.1016/j.cemconcomp.2012.08.024
81. Marques, P.; Chastre, C.; and Nunes, Â., “Carbonation Service Life Modelling of RC Structures for Concrete with Portland and Blended Cements,” Cement and Concrete Composites, V. 37, 2013, pp. 171-184. doi: 10.1016/j.cemconcomp.2012.10.007
82. Alexander, M.; Mackechnie, J.; and Yam, W., “Carbonation of Concrete Bridge Structures in Three South African Localities,” Cement and Concrete Composites, V. 29, No. 10, 2007, pp. 750-759. doi: 10.1016/j.cemconcomp.2007.06.005