Accelerated Rusting of Reinforcing Bars: The Role of Manganese Alloying in Concrete Reinforcement Steel Bars

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Accelerated Rusting of Reinforcing Bars: The Role of Manganese Alloying in Concrete Reinforcement Steel Bars

Author(s): R. Rizwan Hussain, A. Alhozaimy, A. Al Negheimish, J. K. Singh, and D. D. N. Singh

Publication: Materials Journal

Volume: 113

Issue: 5

Appears on pages(s): 579-588

Keywords: elemental composition; manganese alloying; rusting; steel reinforcing bars

DOI: 10.14359/51688985

Date: 9/1/2016

Abstract:
The role of alloying of manganese in mild carbon steel reinforcing bar on the rate of atmospheric rusting is investigated. Four types of steel reinforcing bar from different producers having variations in the rate of atmospheric rusting were collected and exposed to the atmosphere of Jamshedpur, India for 3 years. The corrosion rates of the exposed reinforcing bar samples were evaluated by determining the loss in weight of the samples. A direct relationship has been recorded between the rate of corrosion and the manganese content in the steel. The corrosion products formed on the surface of the exposed reinforcing bar samples were characterized by Raman spectroscopy and X-ray diffraction techniques. Electrochemical impedance spectroscopy and DC polarization studies of the reinforcing bar samples were also performed to understand the causes for the difference in their rates of rusting. The mechanism for the accelerated rate of rusting recorded for the higher manganese-containing steel is discussed by proposing a schematic model incorporating different stages of reactions.

Related References:

1. Singh, D. D. N.; Ghosh, R.; and Singh, R. J., “Corrosion Performance of Steel Reinforcing bars Embedded in Chloride Contaminated Concrete Mortars—Role of Surface Pre-treatments,” Metals, Materials and Processes, V. 16, 2003, pp. 313-326.

2. Johnston, B., and Cox, K., “The Bond Strength of Rusted Deformed Bars,” ACI Journal Proceedings, V. 37, Sept. 1940, pp. 57-72.

3. Mourgeon, E.; Puybasset, L.; Law-Koune, J.-D.; Lu, Q.; Abdennour, L.; Gallart, L.; Malassine, P.; Rao, G. S. U.; Cluzel, P.; Bennani, A.; Coriat, P.; and Rouby, J.-J., “The Effect of Rust on Reinforcement,” Concrete (London), V. 1, No. 1, 1997, pp. 25-27. doi: 10.1186/cc4

4. Mehmood, T.; Ashan, S. N.; and Al-Mughaidi, M. S., “Atmospheric Rusting of Reinforcing Bars and its Effects on Reinforced Concrete Corrosion,” Document NACE-98633, CORROSION 98, NACE International, San Diego, CA, 1998.

5. Wei, J.; Dong, J.; and Ke, W., “Study on the Corrosion Resistance of Hot Rolled Reinforcing Bar Quenched with a New Chemical Reagent,” Proceedings of the Eighth Pacific Rim International Congress on Advanced Materials and Processing, Waikoloa, HI, 2013.

6. Wang, Z. F., “The Corrosion Resistance of Weathering Steels in Atmospheric Exposure and Laboratory-Accelerated Corrosion Tests,” Proceedings of the Eighth Pacific Rim International Congress on Advanced Materials and Processing, Waikoloa, HI, 2013.

7. Singh, D. D. N.; Yadav, S.; and Saha, J. K., “Role of Climatic Conditions on Corrosion Characteristics of Structural Steels,” Corrosion Science, V. 50, No. 1, 2008, pp. 93-110. doi: 10.1016/j.corsci.2007.06.026

8. Keller, P., “Röntgenamorphe Phasen im Rost,” Werkstoffe und Korrosion, V. 22, No. 1, 1971, pp. 32-35. doi: 10.1002/maco.19710220105

9. Hiller, J. E., “Phasenumwandlungen im Rost,” Werkstoffe und Korrosion, V. 17, No. 11, 1966, pp. 943-951. doi: 10.1002/maco.19660171104

10. Kamaya, M.; Sakai, S.; Totsuka, N.; and Nakajima, N., “Estimation of Short Crack Growth Rate on PWSCC of Millanealed Alloy 600,” Zairyo-to-Kankyo, V. 49, No. 3, 2000, pp. 159-165.

11. Dillmann, P.; Mazandier, F.; and Hoerle, S., “Advances in Understanding Atmospheric Corrosion of Iron. I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion,” Corrosion Science, V. 46, No. 6, 2004, pp. 1401-1429. doi: 10.1016/j.corsci.2003.09.027

12. Yamashita, M.; Miyuki, H.; Matsuda, Y.; Nagano, H.; and Misawa, T., “The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion during a Quarter of a Century,” Corrosion Science, V. 36, No. 2, 1994, pp. 283-299. doi: 10.1016/0010-938X(94)90158-9

13. Reddy, L. K., Principles of Engineering Metallurgy, New Age International, 2007, 144 pp.

14. Javaherdashti, R.; Nwaoha, C.; and Tan, H., Corrosion and Materials in the Oil and Gas Industries, CRC Press, 2013, 721 pp.

15. Holappa, L., and Louhemkilpi, S., “On the Role of Ferroalloys in Steelmaking,” Proceedings of the 13th International Ferroalloys Congress—Efficient Technologies in Ferro Alloy Industry, Almaty, Kazakhstan, 2013, pp. 1083-1090.

16. Society of Automotive Engineers (SAE), “Standard SAE J2334,” Warrendale, PA, 2003.

17. Damgaard, N. R.; Walbridge, S.; Hansson, C. M.; and Yeung, J., “Corrosion Protection and Assessment of Weathering Steel Highway Structures,” Journal of Constructional Steel Research, V. 66, No. 10, 2010, pp. 1174-1185. doi: 10.1016/j.jcsr.2010.04.012

18. Al-Negheimish, A.; Alhozaimy, A.; Hussain, R. R.; Al-Zaid, R.; Singh, J. K.; and Singh, D. D. N., “Role of Manganese Sulfide Inclusions in Steel Reinforcing bar in the Formation and Breakdown of Passive Films in Concrete Pore Solutions,” Corrosion, V. 70, No. 1, 2014, pp. 74-86. doi: 10.5006/0941

19. Alhozaimy, A.; Hussain, R. R.; Al-Negheimish, A.; Al-Zaid, R.; and Singh, D. D. N., “Effect of Simulated Concrete Pore Solution Chemistry, Chloride Ions, and Temperature on Passive Layer Formed on Steel Reinforcement,” ACI Materials Journal, V. 111, No. 4, July-Aug. 2014, pp. 411-421. doi: 10.14359/51686829

20. Cairns, J., and Abdullah, R., “Ultimate Strength of Lapped Joints of Epoxy Coated Reinforcement,” Proceedings of the ICE: Structures and Buildings, V. 104, No. 4, 1994, pp. 391-400.

21. Cairns, J., and Abdullah, R., “Fundamental Tests on Effect of Epoxy Coating on Bond Strength,” ACI Materials Journal, V. 91, No. 4, July-Aug. 1994, pp. 331-338.

22. Singh, D. D. N.; Dey, A. K.; Dey, M.; and Singh, B. K., “Corrosion Characteristics of HSLA Steels in Sea Water,” Proceedings of the International Conference on Corrosion (CORCON 97), Mumbai, India, 1997, pp. 108-113.

23. Uhlig, H. H.; White, A.; and Lincoln, J. Jr., “Austenitic Cr-Fe-Ni Alloys Resistant to Stress Corrosion Cracking in Magnesium Chloride,” Acta Materialia, V. 5, No. 8, 1957, pp. 473-475. doi: 10.1016/0001-6160(57)90066-4

24. Uhlig, H. H., and White, A., Transactions of ASM, V. 52, 1960, p. 830

25. Quojia, Y.; Shan, W.; Shang, C. J.; Wang, Y.; and He, X. L., “Effect of Carbon Content and Microstructure on Corrosion Resistance of Low Alloy Steels,” Iron and Steel, V. 43, 2008, p. 58

26. López, D. A.; Pérez, T.; and Simison, S. N., “The Influence of Microstructure and Chemical Composition of Carbon and Low Alloy Steels in CO2 Corrosion: A State-of-the-Art Appraisal,” Materials & Design, V. 24, No. 8, 2003, pp. 561-575. doi: 10.1016/S0261-3069(03)00158-4

27. Evans, U. R., “Mechanism of Rusting,” Corrosion Science, V. 9, No. 11, 1969, pp. 813-821. doi: 10.1016/S0010-938X(69)80074-0

28. Cox, A., and Lyon, S. B., “An Electrochemical Study of the Atmospheric Corrosion of Iron—II. Cathodic and Anodic Processes on Uncorroded and Pre-corroded Iron,” Corrosion Science, V. 36, No. 7, 1994, pp. 1177-1192. doi: 10.1016/0010-938X(94)90142-2

29. Misawa, T.; Kyuno, T.; Suëtaka, W.; and Shimodaria, S., “The Mechanism of Atmospheric Rusting and the Effect of Cu and P on the Rust Formation of Low Alloy Steels,” Corrosion Science, V. 11, No. 1, 1971, pp. 35-48. doi: 10.1016/S0010-938X(71)80072-0

30. Asami, K., and Kikuchi, M., “In-Depth Distribution of Rusts on a Plain Carbon Steel and Weathering Steels Exposed to Coastal-Industrial Atmosphere for 17 Years,” Corrosion Science, V. 45, No. 11, 2003, pp. 2671-2688. doi: 10.1016/S0010-938X(03)00070-2

31. Haruyama, S., and Tsuru, T., “A Corrosion Monitor Based on Impedance Method,” Electrochemical Corrosion Testing: A Symposium Sponsored by ASTM Committee G1 on Corrosion of Metals, 1979, pp. 167.

32. Kanno, K.; Suzuki, M.; and Sato, Y., “Coulostatic Method for Rapid Estimation of Corrosion Rate; Application to SB46 in 1N H2SO4 and SS41 in Distilled Water,” Boshoku Gijutsu, V. 26, 1977, pp. 697-701. https://www.jstage.jst.go.jp/article/jcorr1974/26/12/26_12_697/_pdf

33. Langford, G., “Microstructures,” Low Alloy Steel Chapter, www.georgesbasement.com, 2005.

34. Maalekian, M., “The Effects of Alloying Elements on Steels (I),” www.online.tugraz.at/tug_online (accessed June 2014)

35. Bhadeshia, H., and Honeycombe, R., Steels: Microstructure and Properties, Butterworth-Heinemann, 2011, 360 pp.

36. Wicks, C. E., and Block, F. E., Thermodynamic Properties of 65 Elements: Their Oxides, Halides, Carbides and Nitrides, U.S. Government Print Office, Washington, DC, 1963.

37. Stratmann, M., “The Atmospheric Corrosion of Iron—A Discussion of the Physico-Chemical Fundamentals of this Omnipresent Corrosion Process; Invited Review,” Berichte der Bunsengesellschaftfür Physikalische, V. 94, 1990, pp. 626-639.

38. Krishnamurti, G. S. R., and Huang, P. M., “Influence of Mn++ and pH on the Formation of Iron Oxides from Ferrous Chloride and Ferrous Sulphate Solutions,” Clays and Clay Minerals, V. 37, No. 5, 1989, pp. 451-458. doi: 10.1346/CCMN.1989.0370509

39. Detournay, J.; Ghodsi, M.; and Derie, R., “Influence de la Température et de la Présence des Ions Etrangers sur la Cinétique et le Mécanisme de Formation de la Goethite en Milieu Aqueux,” Zeitschrift für anorganische und allgemeine Chemie, V. 412, No. 2, 1975, pp. 184-192. doi: 10.1002/zaac.19754120212

40. Shi, X.; Avci, R.; and Lewandowski, Z., “Microbially Deposited Manganese and Iron Oxides on Passive Metals—Their Chemistry and Consequences for Material Performance,” Corrosion, V. 58, No. 9, 2002, pp. 728-738. doi: 10.5006/1.3277655

41. Notker, R. B.; Brown, S. R.; Davault, R. F.; Jevek, J. M.; Milobowski, M. J.; Rogers, K. G.; Sarver, J. M.; and Ulbricht, S. P., Technical Paper BR-1876, Power Plant Pollutant Mega Symposium, Baltimore, MD, Aug. 2012.

42. Dickinson, W. H., and Pick, R. W., “Manganese-Dependent Corrosion in the Electric Utility Industry,” Corrosion 2004, Paper No. 2444, 2004.

43. Paul, S., “Modeling to Study the Effect of Environmental Parameters on Corrosion of Mild Steel in Seawater Using Neural Network, International Scholarly Research Network,” ISRN Metallurgy, V. 2012, 2012, 6 pp. doi: 10.5402/2012/48735110.5402/2012/487351

44. Arihara, K.; Mao, L.; Liddell, P. A.; Marino-Ochoa, E.; Moore, A. L.; Sotomura, T.; Ohsaka, T.; and Osaka, M., “Electrocatalytic Reduction of Oxygen on a Novel Catalytic System with Cobalt Phthalocyanines and Manganese Oxide,” Journal of the Electrochemical Society, V. 151, No. 12, 2004, pp. A2047-A2052. doi: 10.1149/1.1813654

45. Mao, L.; Sotomura, T.; Nakatsu, K.; Koshiba, N.; Zhang, D.; and Ohsaka, T., “Electrochemical Characterization of Catalytic Activities of Manganese Oxides to Oxygen Reduction in Alkaline Aqueous Solution,” Journal of the Electrochemical Society, V. 149, No. 4, 2002, pp. A504-A507. doi: 10.1149/1.1461378

46. Xiao, J.; Wan, L.; Wang, X.; Kuang, Q.; Dong, S.; Xiao, F.; and Wang, S., “Mesoporous Mn3O4-CoO Core-Shell Spheres Wrapped by Carbon Nanotubes: A High Performance Catalyst for the Oxygen Reduction Reaction and CO Oxidation,” Journal of Materials Chemistry A, V. 2, No. 11, 2014, pp. 3794-3800. doi: 10.1039/c3ta14453d

47. Wei, Z. D.; Huang, W. Z.; Zhang, S. T.; and Tan, J., “Induced Effect of Mn3O4 on Formation of MnO2 Crystals Favourable to Catalysis of Oxygen Reduction,” Journal of Applied Electrochemistry, V. 30, No. 10, 2000, pp. 1133-1136. doi: 10.1023/A:1004046100455

48. Wang, Y.-G.; Cheng, L.; Li, F.; Xiong, H.-M.; and Xia, Y.-Y., “High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions,” Chemistry of Materials, V. 19, No. 8, 2007, pp. 2095-2101. doi: 10.1021/cm062685t

49. Xiao, Y. P.; Jiang, W. J.; Wan, S.; Zhang, X.; Hu, J. S.; Wei, Z. D.; and Wan, L. J., “Self-Deposition of Pt Nanocrystals on Mn3O4 Coated Carbon Nanotubes for Enhanced Oxygen Reduction Electrocatalysis,” Journal of Materials Chemistry. A, Materials for Energy and Sustainability, V. 1, No. 25, 2013, pp. 7463-7468. doi: 10.1039/c3ta10298j

50. Kim, K. W.; Kim, S. M.; Choi, S.; Kim, J.; and Lee, I. S., “Electroless Pt Deposition on Mn3O4 Nanoparticles via the Galvanic Replacement Process: Electrocatalytic Nanocomposite with Enhanced Performance for Oxygen Reduction Reaction,” ACS Nano, V. 6, No. 6, 2012, pp. 5122-5129. doi: 10.1021/nn300782m


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer