Title:
Shape of Hypersurface of Concrete under Multiaxial Loading
Author(s):
Robert Ritter and Manfred Curbach
Publication:
Materials Journal
Volume:
113
Issue:
1
Appears on pages(s):
55-65
Keywords:
biaxial load; compression-compression-compression load; failure surface; hypersurface; multiaxial behavior; multiaxial load; multiaxial strength; tension-compression-compression load
DOI:
10.14359/51688182
Date:
1/1/2016
Abstract:
Multiaxial stress states have a significant influence on the understanding of the strength of concrete. General information about the shape of the hypersurface of multiaxial strength exists and there is a range of models that depict these well-known boundaries. In this study, a new model is presented that is formulated in a rotated principle direction coordinate system. The basic approach of the model satisfies the known boundaries and by modification of the approach, a more complex shape of hypersurface results. The modifications are made in such a way that by fitting the arbitrary parameters, the basic form of the model can be obtained. Based on a dataset of multiaxial strength values of an ultra-high-strength concrete, different modifications of the model are investigated and discussed concerning prediction accuracy. As a result, the best approximation of the used dataset is obtained in the shape of a hypersurface, which points in the direction of hydrostatic tension strength non-convex sections.
Related References:
1. Hampel, T.; Speck, K.; Scheerer, S.; Ritter, R.; and Curbach, M., “High Performance Concrete under Biaxial and Triaxial Loads,” Journal of Engineering Mechanics, ASCE, V. 135, No. 11, 2009, pp. 1274-1280. doi: 10.1061/(ASCE)0733-9399(2009)135:11(1274)
2. Curbach, M., and Speck, K., “Zweiaxiale Druckfestigkeit von ultrahochfestem Beton,” Beton- und Stahlbetonbau, V. 102, No. 10, 2007, pp. 664-673.
3. Curbach, M., and Speck, K., “Mehraxiale Festigkeit von duktilem Hochleistungsbeton,” Schriftenreihe Deutscher Ausschuss für Stahlbeton, Heft 524, Beuth Verlag, 2002, 246 pp.
4. Lan, S., and Guo, Z., “Experimental Investigation of Multiaxial Compressive Strength of Concrete under Different Stress Paths,” ACI Materials Journal, V. 94, No. 5, Sept.-Oct. 1997, pp. 427-434.
5. Lu, X., and Hsu, C.-T. T., “Behavior of High Strength Concrete with and without Steel Fiber Reinforcement in Triaxial Compression,” Cement and Concrete Composites, V. 36, No. 9, 2006, pp. 1679-1685. doi: 10.1016/j.cemconres.2006.05.021
6. Mills, L. L., and Zimmermann, R. M., “Compressive Strength of Plain Concrete under Multiaxial Loading Conditions,” ACI Journal Proceedings, V. 67, No. 10, Oct. 1970, pp. 802-807.
7. Hussein, A. A., and Marzouk, H., “Behavior of High-Strength Concrete under Biaxial Stresses,” ACI Materials Journal, V. 97, No. 1, Jan.-Feb. 2000, pp. 27-36.
8. Kupfer, H. B., and Gerstle, K. H., “Behavior of Concrete under Biaxial Stresses,” Journal of the Engineering Mechanics Division, ASCE, V. 99, 1973, pp. 853-866.
9. Mahmood, N., and Hannant, D. J., “The Strength of Concrete Subjected to Compression-Compression-Tension Stress Systems,” Journal of Testing and Evaluation, V. 3, No. 2, 1975, pp. 107-112. doi: 10.1520/JTE10144J
10. Wang, H. L., and Song, Y. P., “Behavior of Mass Concrete under Biaxial Compression-Tension and Triaxial Compression-Compression-Tension,” Materials and Structures, V. 42, No. 2, 2009, pp. 241-249. doi: 10.1617/s11527-008-9381-y
11. Lee, S.-K.; Song, Y.-C.; and Han, S.-H., “Biaxial Behavior of Plain Concrete of Nuclear Containment Building,” Nuclear Engineering and Design, V. 227, No. 2, 2004, pp. 143-153. doi: 10.1016/j.nucengdes.2003.09.001
12. Liang, W., “Experimental Research on Strength and Deformation of High Strength Concrete under Triaxial Stress States (T/T/C, T/T/T),” PhD thesis, Tsinghua University, Beijing, China, 1998, 98 pp.
13. Willam, K. J., and Warnke, E. P., “Constitutive Model for the Triaxial Behavior of Concrete,“ Concrete Structures Subjected to Triaxial Stresses, IABSE-Report No. 19, 1974, Bergamo, Italy, 30 pp.
14. Ottosen, N. S., “A Failure Criterion for Concrete,” Journal of the Engineering Mechanics Division, ASCE, V. 103, 1977, pp. 527-535.
15. Hsieh, S. S.; Ting, E. C.; and Chen, W. F., “A Plastic-Fracture Model for Concrete,” International Journal of Solids and Structures, V. 18, No. 3, 1982, pp. 181-197. doi: 10.1016/0020-7683(82)90001-4
16. Bresler, B., and Pister, K. S., “Strength of Concrete under Combined Stresses,” ACI Journal Proceedings, V. 55, No. 9, Sept. 1958, pp. 321-345.
17. Ritter, R., and Curbach, M., “Zugkrafteinleitung in Beton bei mehraxialen Belastungsversuchen,” Beton- und Stahlbetonbau, V. 109, No. 11, 2014, pp. 1-10.
18. Ritter, R., “Verformungsverhalten und Grenzflächen von Ultrahochleitsungsbeton unter mehraxialer Beanspruchung,” PhD thesis, Technische Universität Dresden, Fakultät Bauingenieurwesen, 2014, 280 pp.
19. Speck, K., “Beton unter mehraxialer Beanspruchung,” PhD thesis, Technische Universität Dresden, Fakultät Bauingenieurwesen, 2008, 234 pp.
20. Guo, Z.; Zhou, Y.; and Nechavatal, D., “Auswertung von Versuchen zur mehrachsigen Betonfestigkeit, die an der Technischen Universität München durchgeführt wurden,” Schriftenreihe Deutscher Ausschuss für Stahlbeton, Heft 447, Beuth Verlag, 1995, pp. 65-106.