International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 14 Abstracts search results

Document: 

SP98-10

Date: 

March 3, 1987

Author(s):

T. L. Weinmann, K. N. Shiu, and N. W. Hanson

Publication:

Symposium Papers

Volume:

98

Abstract:

The microcomputer and associated digital technology has changed the way things are done both in the structural laboratory and in the field. The impact of microcomputers on the science of field measurement is mainly with regard to cost and time. The many benefits of field monitoring of structures are now available at an acceptable cost. Cost is reduced due to automatic recording rather than manual methods. This paper discusses the benefits of field monitoring during construction and the life of the structure. Two proven measuring systems are described in detail. The paper also describes a system for dynamic analysis of structures. The reduced cost of determining the behavior of buildings and bridges is not the only benefit of these three new measuring systems. Data returned for analysis are in a form that can be quickly reduced and evaluated by computer. A short turn-around time means that the behavior data are available when needed.

DOI:

10.14359/3549


Document: 

SP98-06

Date: 

March 3, 1987

Author(s):

M. I. Hoit, F. E. Fagundo and J. Johnson

Publication:

Symposium Papers

Volume:

98

Abstract:

Presents a new computer design environment that allows the designer complete freedom in choosing design options. It combines three common tools--analysis, graphics, and a spreadsheet--into a completely integrated system. The environment allows the designer to take results directly from the analysis database, display them graphically, choose the values to be used for design, and then insert those values automatically into the spreadsheet environment. The spreadsheet can be customized, through the use of templates, to fit any design scheme. A template for the design of singly reinforced concrete beams is presented.

DOI:

10.14359/3065


Document: 

SP98

Date: 

March 3, 1987

Author(s):

Editor: Shlomo Ginsburg

Publication:

Symposium Papers

Volume:

98

Abstract:

SP-98 Because the design of concrete structures and proportioning concrete mixtures can be complex, you need state-of-the-art knowledge when selecting structural systems and construction materials. Computer Applications in Concrete Technology has been especially prepared to aid designers and engineers in all facets of concrete design and technology. Providing a source of "know-how" for the entire civil engineering community, this symposium volume of 13 papers covers a broad spectrum of computer applications. Some of the subjects include: expert systems for selecting concrete constituents, analysis of reinforced concrete shear walls, analysis and design of load-bearing tilt-up walls, decision support systems for design, and spreadsheet programming for structural design. Other topics include: monitoring construction with microcomputers as you build, analysis and design of reinforced and prestressed concrete compression members using desktop computers, and integrated design environment for concrete structures.

DOI:

10.14359/14134


Document: 

SP98-12

Date: 

March 3, 1987

Author(s):

A. Casas and I. J. Oppenheim

Publication:

Symposium Papers

Volume:

98

Abstract:

Spreadsheet programming is presented as a new programming alternative for solving daily calculations in the engineering design office. Two spreadsheet programs with different applications are used to introduce the reader to this technique. A retaining wall template demonstrates the advantage of altering one design parameter and seeing the results propagate instantly, thus leaving the engineer with a very responsive tool. A prestressed bridge template organizes in separate windows the engineering design process involved in the prestress design. The template is written according to the design requirements of AASHTO. It allows the engineer to verify different alternatives in the design of the concrete girder, hence leading to a manually optimized section.

DOI:

10.14359/3102


Document: 

SP98-13

Date: 

March 3, 1987

Author(s):

P. Balaguru

Publication:

Symposium Papers

Volume:

98

Abstract:

Presents an algorithm for a program code for the analysis of concrete columns reinforced with nonprestressed reinforcement, prestressed reinforcement, or both. The algorithm can be used to generate the coordinates of the load-moment interaction diagram for the section chosen in terms of shape; material properties; and type, amount and location of nonprestressed and prestressed reinforcement. Three shapes--namely rectangular, T, and I--can be analyzed. Hollow-core wall panels can be analyzed by converting them to equivalent I-sections. The lateral reinforcement could be ties, spirals, or none. The program can also be coded to reanalyze the section for revised partial input. This capability aids the designer in generating the loads and moment for, say, a different compressive strength of concrete without reinputting the entire design data. The load-moment values can be printed to look like the load-moment interaction diagram. The various assumptions involved, the equations, and the sequence of calculations are explained using a number of flow charts. A procedure is outlined for using the program for design purposes. Example problems are provided to illustrate the input-output variables. The program code, written in BASIC for Apple desktop computer, can be obtained from the author. The algorithm deals with only the strength aspect. The serviceability aspect, especially for prestressed columns, should be checked separately.

DOI:

10.14359/3111


123

Results Per Page 




Edit Module Settings to define Page Content Reviewer