ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 14 Abstracts search results
Document:
SP98-10
Date:
March 3, 1987
Author(s):
T. L. Weinmann, K. N. Shiu, and N. W. Hanson
Publication:
Symposium Papers
Volume:
98
Abstract:
The microcomputer and associated digital technology has changed the way things are done both in the structural laboratory and in the field. The impact of microcomputers on the science of field measurement is mainly with regard to cost and time. The many benefits of field monitoring of structures are now available at an acceptable cost. Cost is reduced due to automatic recording rather than manual methods. This paper discusses the benefits of field monitoring during construction and the life of the structure. Two proven measuring systems are described in detail. The paper also describes a system for dynamic analysis of structures. The reduced cost of determining the behavior of buildings and bridges is not the only benefit of these three new measuring systems. Data returned for analysis are in a form that can be quickly reduced and evaluated by computer. A short turn-around time means that the behavior data are available when needed.
DOI:
10.14359/3549
SP98-11
R. Drahushak-Crow
Microcomputer applications are continually expanding into new fields, including the area of concrete construction. The dissemination of information concerning these applications promotes their growth and development and benefits the construction industry. When the Bureau of Reclamation began planning Upper Stillwater Dam, the largest roller-compacted concrete (RCC) dam to date in the U.S., due consideration was given to the management of the myriad of concrete test data that would be generated during this rapid method of construction. Using a microcomputer system to facilitate proper treatment of these data would serve several important purposes: 1) provide an overall view of quality control of the RCC, and act as a quality assurance tool; 2) provide a quick method for updating mix design quantities based on variations in materials; and 3) provide access to the data for a comprehensive review of this state-of-the-art method of construction. Both the programming structure and the capabilities of the program will be discussed. The qualifications for developing an RCC quality control system required that the program be user friendly so that it could be readily used by construction inspectors and laboratory technicians. The system provides record keeping for all RCC tests and RCC materials tests, including concrete unit weight, concrete consistency measurements by vibrating table, nuclear density readings, cylinder compressive brake strengths, and aggregate gradations and moisture contents. The program also calculates adjusted mix proportions based on moisture content and clean separation of the aggregate. The RCC quality control system is written in dBASE III, and the host is an IBM-XT microcomputer. The system is connected to a mainframe computer in Denver via modem so that data can be periodically reviewed by designers and for long-term storage.
10.14359/3557
SP98
Editor: Shlomo Ginsburg
SP-98 Because the design of concrete structures and proportioning concrete mixtures can be complex, you need state-of-the-art knowledge when selecting structural systems and construction materials. Computer Applications in Concrete Technology has been especially prepared to aid designers and engineers in all facets of concrete design and technology. Providing a source of "know-how" for the entire civil engineering community, this symposium volume of 13 papers covers a broad spectrum of computer applications. Some of the subjects include: expert systems for selecting concrete constituents, analysis of reinforced concrete shear walls, analysis and design of load-bearing tilt-up walls, decision support systems for design, and spreadsheet programming for structural design. Other topics include: monitoring construction with microcomputers as you build, analysis and design of reinforced and prestressed concrete compression members using desktop computers, and integrated design environment for concrete structures.
10.14359/14134
SP98-06
M. I. Hoit, F. E. Fagundo and J. Johnson
Presents a new computer design environment that allows the designer complete freedom in choosing design options. It combines three common tools--analysis, graphics, and a spreadsheet--into a completely integrated system. The environment allows the designer to take results directly from the analysis database, display them graphically, choose the values to be used for design, and then insert those values automatically into the spreadsheet environment. The spreadsheet can be customized, through the use of templates, to fit any design scheme. A template for the design of singly reinforced concrete beams is presented.
10.14359/3065
SP98-12
A. Casas and I. J. Oppenheim
Spreadsheet programming is presented as a new programming alternative for solving daily calculations in the engineering design office. Two spreadsheet programs with different applications are used to introduce the reader to this technique. A retaining wall template demonstrates the advantage of altering one design parameter and seeing the results propagate instantly, thus leaving the engineer with a very responsive tool. A prestressed bridge template organizes in separate windows the engineering design process involved in the prestress design. The template is written according to the design requirements of AASHTO. It allows the engineer to verify different alternatives in the design of the concrete girder, hence leading to a manually optimized section.
10.14359/3102
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer