ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 15 Abstracts search results
Document:
SP347
Date:
March 15, 2021
Publication:
Symposium Papers
Volume:
347
Abstract:
Sponsors: Sponsored by ACI 370 Committee Editors: Eric Jacques and Mi G. Chorzepa This Symposium Volume reports on the latest developments in the field of high strain rate mechanics and behavior of concrete subject to impact loads. This effort supports the mission of ACI Committee 370 “Blast and Impact Load Effects” to develop and disseminate information on the design of concrete structures subjected to impact, as well as blast and other short-duration dynamic loads. Concrete structures can potentially be exposed to accidental and malicious impact loads during their lifetimes, including those caused by ballistic projectiles, vehicular collision, impact of debris set in motion after an explosion, falling objects during construction and floating objects during tsunamis and storm surges. Assessing the performance of concrete structures to implement cost-effective and structurally-efficient protective measures against these extreme impacting loads necessitates a fundamental understanding of the high strain rate behavior of the constituent materials and of the characteristics of the local response modes activated during the event. This volume presents fourteen papers which provide the reader with deep insight into the state-of-the-art experimental research and cutting-edge computational approaches for concrete materials and structures subject to impact loading. Invited contributions were received from international experts from Australia, Canada, China, Czech Republic, Germany, South Korea, Switzerland, and the United States. The technical papers cover a range of cementitious materials, including high strength and ultra-high strength materials, reactive powder concrete, fiber-reinforced concrete, and externally bonded cementitious layers and other coatings. The papers were to be presented during two technical sessions scheduled for the ACI Spring 2020 Convention in Rosemont, Illinois, but the worldwide COVID-19 pandemic disrupted those plans. The editors thank the authors for their outstanding efforts to showcase their most current research work with the concrete community, and for their assistance, cooperation, and valuable contributions throughout the entire publication process. The editors also thank the members of ACI Committee 370, the reviewers, and the ACI staff for their generous support and encouragement throughout the preparation of this volume.
DOI:
10.14359/51732675
SP-347_03
March 1, 2021
Author(s):
Radoslav Sovják, Sebastjan Kravanja, and Jan Zatloukal
Steel fibres in cementitious composites play a crucial role in making structures less susceptible to the damage caused by projectile impacts. A synergistic effect is achieved when steel fibres and an otherwise brittle cementitious matrix are blended together to produce a high-performance fibre-reinforced cementitious composite with enhanced ductility and strength. These composites also display strain hardening in tension, which leads to enhanced energy absorption and dissipation capacity. In this study, in-service 7.62 × 39 mm [0.28 × 1.54 in.] cartridges were used as projectiles. The muzzle velocity and weight of the projectiles were 710 m/s [2329 ft/s] and 8.04 grams [0.284 oz], respectively. Projectiles were shot with a stationary semi-automatic rifle into specimens made of high-performance fibre-reinforced cementitious composites with various fibre volume contents. Fibres used in this study were straight with a smooth surface. The aspect ratio of the fibre was 108:1 and corresponding dimensions were 14×0.13 mm [0.55×0.005 in.]. The tensile strength of the fibres was 2,800 MPa [406 ksi] and the modulus of elasticity was 210 GPa [30,458 ksi]. Owing to their exceptional mechanical properties, the fibres played a key role in controlling the response of the specimens when impacted by projectiles. The highest fibre volume content used in this study was 2% by volume; the cube compressive strength of the resulting mixture was 144 MPa [20.9 ksi]. Specimens were examined for the possible presence of spalling, scabbing, cracking, or full perforation. Depth of penetration, crater area, and crater volume were also tested. Results showed that steel fibres, due to the aforementioned synergistic effect with a cementitious matrix, notably protected specimens from erosion and significantly reduced cratering damage.
10.14359/51732657
SP-347_04
Tarek Kewaisy, Ayman Elfouly, and Ahmed Khalil
For protective construction applications involving high-velocity projectile impacts, design engineers rely on properly designed reinforced concrete barriers to provide the necessary resistance to penetration. Typically dynamic testing, analytical, semi-empirical and/or computational approaches are called upon to properly handle this highly complex physical problem. The presented research evaluates the use of Applied Element Method (AEM), implemented in Extreme Loading for Structures (ELS) software, to predict the localized damage and penetration of concrete slabs due to high-velocity normal impacts of rigid projectiles. Two validation cases were considered involving different concrete and reinforcing rebar material properties and projectile impact velocities. The applicability of AEM simulations was validated by comparing predicted damage and projectile penetrations to corresponding observations and measurements obtained during impact testing. A limited parametric study including seven analytical cases was performed to investigate the effects of varying concrete strengths, reinforcement arrangements and concrete thickness on the penetration resistance of concrete targets. To achieve this, three concrete classes; Normal Strength Concrete (NSC), Medium Strength Concrete (MSC) and High Strength Concrete (HSC), three reinforcement configurations (unreinforced, single-layer/ larger bar, double-layers) and larger thickness were considered. The application of the engineering-oriented AEM/ ELS software was found to provide impact response predictions that are in good agreement with physical test results. The results of the parametric study confirmed the advantages of using higher concrete strengths and higher reinforcement ratios in improving the penetration resistance and reducing the scabbing damage of reinforced concrete barriers.
10.14359/51732658
SP-347_05
Serhan Guner, Trevor D. Hrynyk, and Andac Lulec
Current computational modeling approaches used to evaluate the impact-resisting performance of reinforced concrete infrastructure generally consist of high-fidelity modeling techniques which are expensive in terms of both model preparation and computation cost; thus, their application to real-word structural engineering problems remains limited. Further, modeling shear, erosion, and perforation effects presents as a significant challenge, even when using expensive high-fidelity computational techniques. To address these challenges, a simplified nonlinear modeling methodology has been developed. This paper focuses on this simplified methodology which employs a smeared-crack continuum material model based on the constitutive formulations of the Disturbed Stress Field Model. The smeared-crack model has the benefit of simplifying the modeling process and reducing the computational cost. The total-load, secant-stiffness formulation provides well-converging and numerically stable solutions even in the heavily damaged stages of the responses. The methodology uses an explicit time-step integration method and incorporates the effects of high strain rates in the behavioral modeling of the constituent materials. Structural damping is primarily incorporated by way of nonlinear concrete and reinforcement hysteresis models and significant secondorder mechanisms are considered. The objective of this paper is to present a consistent reinforced concrete modeling methodology within the context of four structural modeling procedures employing different element types (e.g., 2D frames, 3D thick-shells, 3D solids, and 2D axisymmetric elements). The theoretical approach common to all procedures and unique aspects and capabilities of each procedure are discussed. The application and verification of each procedure for modeling different types of large-scale specimens, subjected to multiple impacts with contact velocities ranging from 8 m/s (26.2 ft/s) to 144 m/s (472 ft/s), and impacting masses ranging from 35 kg (77.2 lb) to 600 kg (1323 lb), are presented to examine their accuracy, reliability, and practicality.
10.14359/51732659
SP-347_06
Thong M. Pham, Tin V. Do, and Hong Hao
This study experimentally and numerically investigated the impact responses of reinforced concrete (RC) beams with a rectangular hollow section (HCB) in comparison with a rectangular solid section (SCB). Experimental tests of the two types of RC beams were firstly conducted under the drop-weight impact of a 203.5-kg-solid-steel projectile. Numerical models of the beams under impact loads were then developed in the commercial software namely LS-DYNA and carefully verified against the experimental results. The numerical models were then used to investigate the stress wave propagation in the two beams. The effect of the top flange depth, contact area, and impact velocity on the impact responses of the beams was also investigated. The experimental and numerical results in this study showed that although the two beams were designed with similar reinforcement ratio, their impact responses were considerably different, especially when the shear failure dominated the structural response. The HCB exhibited a smaller peak impact force but higher lateral displacement than the SCB when these beams were subjected to the same impact condition. Besides, more shear cracks were observed on the HCB while that of SCB has more flexural cracks. Furthermore, the decrease of the top flange depth of the hollow section and the increase of the impact velocity changed the failure modes of the two beams from flexural failure to shear failure with concrete scabbing. The change of the contact area also shifted the failure mode of the beam from global response to direct shear, inclined shear, punching shear and concrete scabbing at the top flange of the section close to the impact location.
10.14359/51732660
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer