ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 9 Abstracts search results
Document:
SP337
Date:
January 30, 2020
Author(s):
ACI Committee 357 – Offshore and Marine Concrete Structures, Mohammad S. Khan
Publication:
Symposium Papers
Volume:
337
Abstract:
Offshore and marine concrete structures have not received enough attention in the recent past, at least in the United States. The complexity and safety concerns associated with these structures are such that they probably need more attention compared to many other types of concrete structures. Also, offshore and marine concrete structures are so global in nature that there is a higher need for better coordination and synchronization of design, construction, inspection, and maintenance practices in different parts of the world. A two-part session, titled “Offshore and Marine Concrete Structures: Past, Present, and Future,” was held at the Spring 2019 ACI Concrete Convention and Exposition on March 24-28 in Quebec City, Quebec, Canada. The session, sponsored by ACI Committee 357, Offshore and Marine Concrete Structures, highlighted accomplishments of the past, current state-of-the-practice, and a path for the future. This ACI Special Publication (SP) is a compilation of select papers presented at the session. The efforts of all the reviewers in assuring the quality of this publication is greatly acknowledged.
DOI:
10.14359/51724587
SP-337_05
January 23, 2020
Kjell Tore Fosså and Widianto
This paper describes the development in concrete technology for offshore concrete structures from the 1970’s until now and discusses some potential topics for future research which would result in more cost-effective offshore concrete structures. Most of the offshore concrete structures constructed in the last 4 decades are still in operation, with no or only minor maintenance required, even though the average age for these structures in the North Sea is more than 25 years. The compressive strength in offshore structures has gradually increased from about 40MPa (5800 psi) in the 1970’s to more than 100MPa (14500 psi) in some of the latest concrete structures. Standards and concrete specifications have been revised several times during these years. In parallel, the knowledge from several research and development programs has been used to further improve the concrete properties and overcome the limitations. Focus has been primarily to improve the compressive strength of the concrete as well as the durability and concrete workability. The cement and admixture industry have been heavily involved in research programs to further adapt and develop these material properties. The result of the product developments in the concrete constituency has also improved cost-effectiveness and durability (including overall life-cycle cost-effectiveness) for offshore concrete structures. With the new generation technology, the technical limitations we face today will be overcome. With more knowledge and improved technology, the quantity and size of cracks in concrete in service are expected to be reduced, which would also improve durability. In addition, the focus in the future will also be on sustainable and environmentally friendly materials.
This paper describes the development in concrete technology for offshore concrete structures from the 1970’s until now and discusses some potential topics for future research which would result in more cost-effective offshore concrete structures.
Most of the offshore concrete structures constructed in the last 4 decades are still in operation, with no or only minor maintenance required, even though the average age for these structures in the North Sea is more than 25 years. The compressive strength in offshore structures has gradually increased from about 40MPa (5800 psi) in the 1970’s to more than 100MPa (14500 psi) in some of the latest concrete structures. Standards and concrete specifications have been revised several times during these years. In parallel, the knowledge from several research and development programs has been used to further improve the concrete properties and overcome the limitations. Focus has been primarily to improve the compressive strength of the concrete as well as the durability and concrete workability. The cement and admixture industry have been heavily involved in research programs to further adapt and develop these material properties. The result of the product developments in the concrete constituency has also improved cost-effectiveness and durability (including overall life-cycle cost-effectiveness) for offshore concrete structures.
With the new generation technology, the technical limitations we face today will be overcome. With more knowledge and improved technology, the quantity and size of cracks in concrete in service are expected to be reduced, which would also improve durability. In addition, the focus in the future will also be on sustainable and environmentally friendly materials.
10.14359/51724548
SP-337_06
Edward (Ted) Moffatt, Michael Thomas and Andrew Fahim
In 1978, the Canadian Centre of Mineral and Energy Technology (CANMET) initiated a longterm study to determine the performance of concrete in a marine environment. Between 1978 and 1994, over three hundred prisms as part of 14 different experimental phases were placed at the mid-tide level at the Treat Island exposure site. Treat Island is an outdoor exposure site operated by the U.S. Army Corps of Engineers, and lies in the Passamaquoddy Bay, part of the Bay of Fundy, near the town of Eastport in Maine. Following 25 years of exposure, the blocks were retrieved after being exposed to tidal conditions representing approximately 18,250 cycles of wetting and drying, and 2,500 cycles of freezing and thawing. This paper presents the durability performance of concrete from several phases of the CANMET study. This includes concrete incorporating various levels of supplementary cementing materials (up to 80% by mass of cementing material in some cases), with normal density and light-weight aggregate. The paper also compares output from the service-life model Life-365 with experimental chloride profile data. The results indicate the efficacy of SCMs in increasing the concrete resistance to chloride penetration. However, use of very high levels of these materials was found to render the concrete more susceptible to surface scaling. The results also showed that Life-365 model can predict chloride penetration adequately with very simple inputs.
10.14359/51724549
SP-337_01
Widianto; Jameel Khalifa; Erik Åldstedt; Kåre O. Hæreid; Kjell Tore Fosså
An offshore concrete Gravity-Based-Structure (GBS) is a massive concrete structure placed on the seafloor and held in place strictly by its own weight, without need for anchors. This paper focuses on concrete GBSs used as the base of integrated oil drilling and production platforms. The summary of key distinct structural features of several major GBSs, since the first Ekofisk GBS (installed in the North Sea, offshore Norway, in 1973) until the latest Hebron GBS (installed in the Grand Banks, Canada, in 2017), is presented. This paper also discusses several unique loads that GBSs have to resist. An overview of structural analysis and design methodology is described in detail. Key considerations for preliminary sizing of GBS structural components are presented. Typical construction phases, methods, and the importance of constructability are explained. Finally, potential future research topics that would result in a more cost-effective offshore concrete GBS are discussed.
10.14359/51724544
SP-337_02
Widianto; Jameel Khalifa; Kåre O. Hæreid; Kjell Tore Fosså; Anton Gjørven
The Hebron platform is the latest major offshore integrated oil drilling and production platform supported by a concrete gravity-based-structure (GBS). It was successfully installed in the Grand Banks (offshore Newfoundland) in June 2017. The design of the platform was challenged by arctic-like and extreme metocean conditions. This paper presents development of extreme loads on the GBS such as 10,000-year iceberg impact and wave loads. It also describes novel design and construction techniques used, which resulted in a capitalefficient platform. From an analysis and design perspective, in addition to linear-elastic finite element analysis typically used in design of offshore concrete GBS, the innovative use of non-linear finite element analysis (NLFEA) technique to calculate internal forces is presented. Such analyses more accurately capture the structural behavior and result in more realistic internal forces. In addition, a new crack-width calculation method accounting for the effect of a significant number of layers of transverse reinforcement was implemented. Also, a novel method to assess the complex interactions between solid ballast, embedded pipes, and concrete structures was applied. From a construction perspective, the use of slipforming panels that are taller than those used in past GBSs and a system to allow slipforming of the shaft wall with a complex geometry and curvature, that is much larger than that employed in the past GBS, are presented. A novel method to minimize the risk of concrete adhering to slipforming panels by cooling the panels with cold water is presented. An innovative method to ensure that highstrength grout completely filled the space underneath one of the largest Topsides footings is discussed. Full-scale constructability tests of various complex GBS components, which provided invaluable information for design, increased execution certainty, and improved construction safety, is presented.
The Hebron platform is the latest major offshore integrated oil drilling and production platform supported by a concrete gravity-based-structure (GBS). It was successfully installed in the Grand Banks (offshore Newfoundland) in June 2017. The design of the platform was challenged by arctic-like and extreme metocean conditions. This paper presents development of extreme loads on the GBS such as 10,000-year iceberg impact and wave loads. It also describes novel design and construction techniques used, which resulted in a capitalefficient platform.
From an analysis and design perspective, in addition to linear-elastic finite element analysis typically used in design of offshore concrete GBS, the innovative use of non-linear finite element analysis (NLFEA) technique to calculate internal forces is presented. Such analyses more accurately capture the structural behavior and result in more realistic internal forces. In addition, a new crack-width calculation method accounting for the effect of a significant number of layers of transverse reinforcement was implemented. Also, a novel method to assess the complex interactions between solid ballast, embedded pipes, and concrete structures was applied.
From a construction perspective, the use of slipforming panels that are taller than those used in past GBSs and a system to allow slipforming of the shaft wall with a complex geometry and curvature, that is much larger than that employed in the past GBS, are presented. A novel method to minimize the risk of concrete adhering to slipforming panels by cooling the panels with cold water is presented. An innovative method to ensure that highstrength grout completely filled the space underneath one of the largest Topsides footings is discussed. Full-scale constructability tests of various complex GBS components, which provided invaluable information for design, increased execution certainty, and improved construction safety, is presented.
10.14359/51724545
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer