International Concrete Abstracts Portal

Showing 1-5 of 125 Abstracts search results

Document: 

SP326

Date: 

September 20, 2018

Author(s):

Vyatcheslav Falikman, Roberto Realfonzo, Luigi Coppola, Petr Hàjek, Paolo Riva

Publication:

Symposium Papers

Volume:

326

Abstract:

Modern construction is unthinkable without concrete, the world production and consumption of which is about 10 billion m3 per year. Given the steady growth of the world’s population by 2050, it is expected to double this volume, which will undoubtedly be significantly affected on energy consumption and increase global CO2 emissions. Concrete is perhaps the most universal building material since the beginning and development of civilization. It is sufficient to recall the Great Wall of China, the palaces and temples of Ancient India, the pyramids of Ancient Egypt, the unique buildings of Romans, made with the use of lime-pozzolanic binders. Universality of concrete is defined by simplicity and convenience of its production, rather low cost, structural integrity and homogeneity, durability and a long service life under various aggressive environments. However, the concrete image is sometimes not favorable. It is associated with greater labor intensity of construction works and dismantlement, massive structures, a large impact on the environment in connection with the s consumption of not renewable natural resources. The same perception is greatly facilitated by the fact that, according to Gigaton Throwdown Initiative, “the cement industry is responsible for about 5 to 7% of total CO2 emissions, or 2.1 Gt per year.” Indeed, when producing cement clinker about 0.9 t CO2 / t clinker are produced. Taking into account the annual increase in the production and use of Portland-based cement (more than 4.1 million tons per year) that is the main binder used in the production of concrete, this fact poses a significant threat to humanity as a whole. According to the Intergovernmental Panel on Climate Change (IPCC), actions are necessary to reduce carbon dioxide emissions because in about 30 years CO2 concentrations is expected to reach 450 ppm – a dangerous point above which irreversible climate change will occur on our planet. Since concrete will remain the main building material in the future, it is expected that if new ways and mechanisms to reduce the environmental burden by at least 50% will be not found, it is not possible to maintain the existing level of impact. This problem is so deep and serious that there is hardly a single way to solve it. There is a need for an integrated approach, several complementary activities that provide some synergy. Until recently, the main efforts were aimed at improving technological processes and reducing the consumption of clinker through the production of blended cements, as well as the creation of new types of binders. Active search for alternative binders has led to the development of sulfoaluminate-based cements; alkali-activated materials and geopolymers (slag, fly ash, metakaolin, etc.), efficient and fairly water-resistant magnesia cements; phosphate cements (ammonium phosphate, silicate phosphate, magnesium phosphate etc.), cements with calcium halogen-aluminate and the so called low water demand binders. With the advent of high-performance concretes and new technologies, the possibility of a radical increase of the cement factor in conventional concrete due to the use of high-performance superplasticizers and other chemical admixtures, dramatically reducing the water consumption of the concrete mixture; active mineral additives such as micro silica, metakaolin, fly ash, finely ground granulated slag, etc., as well as a variety of inert fillers that can improve the functionality of concrete mixtures, such as fine limestone. Strictly speaking, “pozzolanic effect” and “filler effect” are easily combined and provide a certain synergy. The potential for reducing cement consumption in concrete production is still undervalued. This is due to certain fears of decreasing the corrosion resistance of concrete and durability of reinforced concrete structures, since the great bulk of the existing standards is prescriptive and sets the minimum cement content in concrete under specific operating conditions. Reinforced concrete structures of buildings and constructions, as a rule, initially, shall have the design strength and sufficiently long service life because their construction often requires a significant investment. The durability of these structures, however, is determined by different ageing processes and the influence of external actions, so their life will be limited. As a result, many structures need to be repaired or even replaced in fairly short time periods, resulting in additional costs and environmental impacts. Therefore, there is a need to improve the design principles of structures taking into account the parameters of durability and thus achieving a sufficiently long service life. Development of the concept of design of structures based on their life cycle, “environmental design”, including a holistic approach that optimizes material and energy resources in the context of operating costs, allow us to completely revise our ideas about structural concrete construction. It should be noted that many recent developments in the field of life cycle analysis (LCA) are aimed at expanding and deepening traditional approaches and creating a more complete description of the processes with the analysis of sustainable development (LCSA) to cover not only the problems associated mainly with the product (product level), but also complex problems related to the construction sector of the economy (at the sector level) or even the general economic level (economy level). The approach to “environmental design” is based on such models and methods of design, which takes into account a set of factors of their impact on the environment, based on the concept of “full life cycle” or models of accounting for total energy consumption and integrated CO2 emission. All of this could become a basis for the solution of the global problem – to contain the growing burden on the environment, providing a 50% reduction in CO2 emissions and energy consumption in the construction industry. Hence a special sharpness P. K. Mehta’s phrase acquires: “...the future of the cement and concrete industry will largely depend on our ability to link their growth for sustainable development...” The above-mentioned acute and urgent problems form the basis of the agenda of the Second edition of International Workshop on “Durability and Sustainability of Concrete Structures – DSCS-2018,” held in Moscow on 6 – 7 June 2018 under the auspices of the American Concrete Institute, the International Federation on structural concrete and the International Union of experts and laboratories in the field of building materials, systems and structures. The selected papers of this major forum, which brought together more than 150 experts from almost 40 countries of the world, are collected in this ACI SP.

DOI:

10.14359/51711167


Document: 

SP326-71

Date: 

August 10, 2018

Author(s):

Paola Di Mascio and Laura Moretti

Publication:

Symposium Papers

Volume:

326

Abstract:

This paper compares the life-cycle costs of pavement and lighting when different pavement types are built in road tunnels. Two pavements, rigid and flexible, during 20 and 30-year service life and for different traffic conditions were analyzed. Tunnel lengths between 750 m [2,460 ft] to 2,000 m [6,562 ft] were considered.

The methodologies used to design and maintain both the pavements and the LED lighting systems complied with the Italian standards and practices. Based on this information, the net present values of the construction and maintenance costs for the pavement and the tunnel lighting system were computed.

The results show that for tunnels longer than 1,200 m, [3,937 ft] with a concrete pavement lighting and road-related construction costs are higher than those obtained with an asphalt pavement. However, after just a few years and due to its low pavement maintenance and lighting system costs, the concrete pavement presents a break-even point, becoming a superior alternative. On the other hand, the option of using concrete pavement in tunnels shorter than 1,200 m [3,937 ft] offers a cheaper solution since the construction year. It was also found that the expected traffic level in the tunnel slightly impacts the economic analyses.

DOI:

10.14359/51711054


Document: 

SP326-68

Date: 

August 10, 2018

Author(s):

Milan Kalny

Publication:

Symposium Papers

Volume:

326

Abstract:

The author has been involved in design of many bridges in the Czech Republic as well as in research and development of ultra-high performance fibre-reinforced concrete (UHPC) and its applications for precast members. His engineering practice confirmed that innovations and value engineering can significantly contribute to durable and sustainable structures. However, in rather traditional and conservative civil engineering profession it is not always easy to bring innovations to life. Many obstacles have to be surmounted including outdated design standards, rigid rules of clients and strict procedures for public procurement where any modifications are not welcomed. While the financial risk of innovative business is mainly on the designer and contractor, the clients have to approve technology which is not verified over a long period and which is connected with possible delays. The experience from innovative projects is shown on 3 implemented bridges as follows:

  • Arch bridge over the Oparno valley
  • Cable-stayed footbridge in Celakovice
  • Lightweight pedestrian precast bridges

Main advantages of these applications are high durability, low maintenance and reasonable life cycle cost. All applications were successfully implemented as alternative proposals in tenders within given financial limits. Finally, the innovative implementations can contribute to sustainable structures and their acceptance by both authorities and public.

DOI:

10.14359/51711051


Document: 

SP326-69

Date: 

August 10, 2018

Author(s):

Petr Hajek and Ctislav Fiala

Publication:

Symposium Papers

Volume:

326

Abstract:

Structures and the built environment should be better prepared for changing climatic conditions – as they should be sustainable and resilient. The specific properties of concrete like affordability, availability and variability in connection with strength and durability have made concrete the most used construction material in the world; and represents a material with high level of safety and resiliency, and high potential for environmental impact reduction. The use of new types of advanced concrete composites represents an especially important potential towards future sustainable and resilient built environment.

Results of a long-term research project on the development of an optimized light precast construction system based on high performance silicate composites are presented as an example of sustainability construction. The concept is based on a combination of slender concrete load-bearing frame structure and timber elements which can lead to advantageous structural and environmental solutions. Slender demountable high performance concrete (HPC) frame represents an effective alternative to timber-based load bearing structures by providing the possibility to build buildings with higher spatial stiffness, better fire safety and acoustic properties of concrete floor structures, while allowing the other structural elements to be constructed of renewable material source – especially wood.

DOI:

10.14359/51711052


Document: 

SP326-65

Date: 

August 10, 2018

Author(s):

Valery Dorf, Rostislav Krasnovsky, Dmitriy Kapustin, and Patimat Sultygova

Publication:

Symposium Papers

Volume:

326

Abstract:

The authors of the Report dealing with study of strength and strain characteristics of stay-in-place steel-fiber-reinforced concrete ((SFRC) forms also performing, in process of reinforced concrete structure operation, the functions of load bearing element analyzed the issue of effects of high temperatures occurred during fire on strength of SFRC of the forms and on rate of ultrasound propagation in forms. The results of study may be taken as a basis for development of recommendations for assessment of technical condition of reinforced concrete structures after fire.

DOI:

10.14359/51711048


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer