International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 49 Abstracts search results

Document: 

SP305

Date: 

September 1, 2015

Publication:

Symposium Papers

Volume:

305

Abstract:

Editors: Mario Alberto Chiorino, Luigi Coppola, Claudio Mazzotti, Roberto Realfonzo, Paolo Riva

With the dawn of twenty-first century, the world has entered into an era of sustainable development. The main challenge for concrete industry is to serve the two major needs of human society, the protection of the environment, on one hand, and - on the other hand - meeting the infrastructural requirements of the world growing population as a consequence of increase in both industrialization and urbanization. In the past, concrete industry has satisfied these needs well. Concrete is an environmentally friendly material useful for the construction of vast infrastructures. Skyscrapers, highway bridges, roads, water retaining structures and residential buildings are all testimonials to concrete’s use and versatility. However, for a variety of reasons the situation has changed dramatically in the last years. First of all, the concrete industry is the largest consumer of natural resources. Secondly, portland cement, the binder of modern concrete mixtures, is not as environmentally friendly. The world’s portland cement production, in fact, contributes to the earth’s atmosphere about 7% of the total CO2 emissions, CO2 being one of the primary greenhouse gases responsible for global warming and climate change. As a consequence, concrete industry in the future has to face two antithetically needs. In other words how the concrete industry can feed the growing population needs being – at the same time - sustainable?

ACI Italy Chapter has been playing a significant role in the last years in the broad area of concrete technology in Italy and, in particular, in the field of concrete durability and sustainability. ACI Italy Chapter has become increasingly involved in research and development dealing with durability and sustainability issues such as reduction in CO2 emissions, use of recycled materials and innovative products, design of durable structures and maintenance, repair and refurbishment of concrete infrastructures.

In October 2015, the American Concrete Institute Italy Chapter (ACI IC) and the Department of Civil, Chemical, Environmental, and Material Engineering (DICAM) of the University of Bologna sponsored the First International Workshop on “Durability & Sustainability of Concrete Structures” in Bologna (Italy). The workshop was co-sponsored by the American Concrete Institute and ACI Committee 201. The proceedings of the workshop were published by ACI IC as SP305. The proceedings consist of forty-eight refereed papers concerning reduction in green house gases in cement and concrete industry, recycled materials, innovative binders and geopolymers, Life Cycle Cost Assessment in concrete construction, reuse and functional resilience of reinforced concrete structures, repair and maintenance, testing, inspection and monitoring.

Many thanks are extended to the members of the technical paper review panel. Without their dedicated efforts it would not have been possible to publish the proceedings. The cooperation of the authors in accepting reviewers’ comments and suggestions and in revising the manuscripts accordingly is greatly appreciated.

Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-305

DOI:

10.14359/51688467


Document: 

SP305-13

Date: 

September 1, 2015

Author(s):

Liberato Ferrara; Isaia Albertini; Ravindra Gettu; Visar Krelani; Simone Moscato; Francesco Pirritano; Marta Roig Flores; Pedro Serna Ros and Swathi M. Theeda

Publication:

Symposium Papers

Volume:

305

Abstract:

Self-healing cementitious composites are a broad category of smart construction materials to which strong and highly qualified research efforts are currently being devoted worldwide, with the aim of providing a sound scientific background to their consistent, and – design-wise – “consciously safe”, use in the engineering practice. Tailored additions can be employed to enhance the self-healing capacity, among which the so-called crystalline admixtures, play a prominent role. Crystalline admixtures consist of proprietary active chemicals, which, because of their hydrophilic nature, react with water and cement particles in the concrete to form calcium silicate hydrates, increasing the density of the CSH phase, and/or pore-blocking precipitates in the existing micro-cracks. The mechanism is analogous to the formation of CSH and the resulting crystalline deposits become integrally bound with the hydrated cement paste, thus contributing not only to a significantly increased resistance to water penetration but also to the healing of the existing damages and cracks. This paper summarizes the results of a wide experimental investigation jointly performed by Politecnico di Milano (Italy), Indian Institute of Technology Madras, Chennai (India) and Universitat Politecnica de Valencia (Spain) to assess the effectiveness of different commercially available crystalline admixtures on the self-healing capacity of cement based materials.

DOI:

10.14359/51688573


Document: 

SP305-10

Date: 

September 1, 2015

Author(s):

Ciro Faella; Carmine Lima; Enzo Martinelli; Marco Pepe; Roberto Realfonzo

Publication:

Symposium Papers

Volume:

305

Abstract:

The concrete industry is among the most resource and energy-consuming human activities. Therefore, several solutions are currently under investigation with the aim of reducing the environmental impacts of concrete production. These solutions often consist of partially replacing ordinary “natural” constituents (i.e. aggregates, cement, water, fibers) with recycled ones, in view of the twofold objective of reducing both the demand of raw materials and the amount of waste to be disposed in landfills. Therefore, this paper deals with sustainable concrete made with recycled concrete aggregates and coal fly-ash in partial substitution of natural aggregates and Portland cement, respectively. Particularly, it reports the results of a wide experimental activity intended at investigating both the mechanical properties and the durability performance of this material by measuring the time evolution of its compressive strength, as well as some relevant durability-related properties, such as water permeability, carbonation resistance and chloride penetration. The results reported herein unveil the synergies arising by employing the aforementioned recycled materials and industrial by-products in partial replacement of the ordinary concrete constituents.

DOI:

10.14359/51688570


Document: 

SP305-11

Date: 

September 1, 2015

Author(s):

Liberato Ferrara; Saulo R. Ferreira; Visar Krelani; Marco della Torre; Flavio Silva and Romildo D. Toledo Filho

Publication:

Symposium Papers

Volume:

305

Abstract:

Natural fibres are a waste product of food and agriculture industry to which a great potential of use as dispersed reinforcement in cementitious composites has been recognized, making them a valuable source of income for developping communities and countries, where they are abundant and can be harvested with minor investments. A further value to the use of natural fibres in cementitious composite as promoters and facilitators of self healing has been recently confirmed by preliminary investigations. Thanks to their microstructure, natural fibres are able to create a porous network through which the moisture can be distributed throughout the cementitious matrix and activate the delayed hydration reactions which, together with carbonation ones, can be responsible of the autogeneous healing of cracks. The authors have undertaken a comprehensive experimental programme to investigate the efficacy of different types of natural fibres, when used in combination with industrial fibres (steel), to promote and enhance the self healing reactions in HPFRCCs. Influence of environmental conditions has also been studied. The effects of self healing on the recovery of flexural performance has been quantified; healed cracks and effects of healing on fiber matrix bond have been visualized through optical digital microscopy.

DOI:

10.14359/51688571


Document: 

SP305-08

Date: 

September 1, 2015

Author(s):

Jacopo Donnini; Valeria Corinaldesi and Antonio Nanni

Publication:

Symposium Papers

Volume:

305

Abstract:

A key concept of sustainability is the preservation of resources, thus adding life to existing concrete structures by means of durable strengthening and rehabilitation methods is a key objective. Composite materials, such as FRCM (Fabric-reinforced Cementitious Matrix), have proven to be a viable option for increasing durability of existing building stock. Experimental works show that the main failure mode of FRCM, applied to masonry or concrete substrates, is by debonding at the fabric/matrix interface. Here, the idea is to use an epoxy coating and a layer of quartz sand in order to increase the adhesion of the fabric with the matrix. The effectiveness of coating treatments was studied by means of tensile tests, as indicated in AC434 Annex A. Tests were carried out on seven different types of fabric, with different levels of pre-impregnation and with or without quartz sand applied to the fabric surface. Experimental evidence shows a promising enhancement of the bond between fabric and matrix and, therefore, of the entire strengthening system even with the use of low percentages of resin, depending on the type of mortar.

DOI:

10.14359/51688568


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer