ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 73 Abstracts search results
Document:
SP275-56
Date:
March 1, 2011
Author(s):
Sarah Zakaib, Pedram Sadeghian, and Amir Fam
Publication:
Symposium Papers
Volume:
275
Abstract:
Concrete-filled GFRP tubes (CFFTs) with and without moment connections to concrete footings were tested. The study aims at exploring the combined effect of maximum shear and maximum moment, both occurring at the same location, on the ultimate strength of CFFTs, as well as moment connection behavior in general. Testing involved simply supported and cantilever bending specimens with varying shear spans and fixed end arrangements. End conditions consisted of either direct embedment into concrete blocks with steel dowels, or mechanical clamping. For the GFRP tubes used, the study concluded that the presence of shear at the location of maximum moment near the connection in a cantilever setup does not cause reduction in flexural capacity, relative to the pure bending strength of the CFFT. The study also revealed that achieving tensile rupture of the CFFT tube does not guarantee that the full potential moment capacity of the CFFT member is reached, as slip plays a key role at the moment connection.
DOI:
10.14359/51682466
SP275-52
A. Palmieri, S. Matthys and L. Taerwe
The use of near surface mounted (NSM) fiber reinforced polymers (FRPs) is being increasingly recognized as a valid technique strengthening of concrete members. In case of elevated temperature or fire exposure however, the bond between the bars and the concrete will be lost very quickly due to the adhesive’s low glass transition temperature. Although recent studies have shown that the fire endurance of appropriately designed and insulated FRP strengthened RC members is satisfactory, the performance of FRP strengthening systems at high temperature remains largely unknown. To study the bond behaviour at elevated temperature between the NSM FRP bars and concrete a series of 18 double bond shear tests were performed at Ghent University. Results show that the failure load of NSM FRP strengthened concrete structures and the bond strength are influenced at values of temperature equal to or beyond the glass transition temperature. Failure mode changed by increasing the temperature.
10.14359/51682462
SP275-53
S. Qazi, E. Ferrier, L. Michel, P. Hamelin
Shear walls as an integral part of structures have revealed to be of prime concern following earthquake surveys over the past few years. It was observed that shear wall structures sustained less damage in comparison to structures that did not possess shear wall. Researchers on the basis of their post earthquake surveys concluded that shear wall buildings sustained damage as a result of design and construction work flaws. In this article test data of CFRP strengthened short RC walls is analyzed. Three RC shear walls, designed to fail in shear, were subjected to static and cyclic load tests in which the loading amplitude was gradually increased till specimen failure occurred. Two out of three walls were strengthened externally with the help of CFRP material and mesh anchors at the wall foundation joint. The experimental results analysis consists in cracking pattern, stiffness, ultimate load capacity, ductility and energy dissipation.
10.14359/51682463
SP275-54
G. E. Thermou, S. P. Tastani and S. J. Pantazopoulou
Review of previous experiments on brittle R.C. columns through FRP jacketing illustrates that the efficiency of FRP jacketing in strengthening applications is superior to that which is observed when jacketing is used as a repair means. Actually, performance of the repair appears to be related to the state of damage along the anchorage or lap splice of primary reinforcement sustained in the initial phase and whether these defects have been corrected or not, by additional measures such as concrete replacement in cases of cracked cover or by epoxy injections along the damaged anchorages, prior to FRP jacketing. Surprisingly, this type of repair proves more effective in elements that have failed in a brittle manner rather than in cases that have undergone extensive yielding; the reason for that is that brittle failure along the member length occurs before the anchorage of the reinforcement has sustained excessive yield penetration, which cannot be avoided in ductile member behavior. This issue is explored systematically through evaluation of the collective experimental evidence from tests on columns repaired with FRP jacketing after having sustained damage under combined axial compression and cyclic lateral displacement reversals.
10.14359/51682464
SP275-49
Luke Bisby, Tim Stratford, Joanna Smith and Sarah Halpin
Fiber reinforced cementitious mortar (FRCM) systems present a novel means of strengthening deficient concrete structures. They present a number of advantages over conventional externally bonded fiber reinforced polymer (FRP) systems. FRCM systems consist of open-weave polybenzoxozole (PBO) fabrics which are applied to structural elements, walls, domes, tunnels, or shells using cementitious mortars. They are breathable, non-combustible and non-flaming, and their performance in elevated service temperature environments is superior to common FRP systems. However, additional research on FRCM is needed, most importantly on their high temperature performance and their long term durability, before they can be widely applied with confidence. This paper reports on an ongoing experimental study into the performance of a specific FRCM system for concrete. Comparative tests on FRCM and FRP strengthened concrete prisms are presented. The superior performance of FRCM strengthening systems at temperatures between 50ºC (122ºF) and 80ºC (176ºF) is demonstrated. The effects of elevated service temperature environments on the bond between FRP strengthening systems and concrete are discussed.
10.14359/51682459
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer