ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 11 Abstracts search results
Document:
SP266-03
Date:
October 1, 2009
Author(s):
J.W. Bullard, P.E. Stutzman, L.M. Ordoñez Belloc, E.J. Garboczi, and D.P. Bentz
Publication:
Symposium Papers
Volume:
266
Abstract:
The NIST-Industry Virtual Cement and Concrete Testing Laboratory (VCCTL) Consortium has developed an integrated software package for performing simulations of a number of engineering test measurements, including isothermal calorimetry, adiabatic temperature change, chemical shrinkage, elastic moduli, and compressive strength. In the last two years, the software interface has been redesigned to be easier to navigate, with online tutorials and documentation for easy reference. As a result, VCCTL is now ready to be integrated in industrial settings as a supplemental tool to accelerate research on mix designs and to streamline routine quality testing procedures. This paper will demonstrate the software interface, and two applications will be described to illustrate the utility of the software to help solve practical problems. In the first application, we address sustainability issues by investigating the replacement of coarse clinker particles with limestone and its effect on elastic moduli and compressive strength. In the second application, we illustrate VCCTL’s potential for screening the quality of incoming cement clinkers by providing rapid estimates of compressive strength development in mortar specimens.
DOI:
10.14359/51663270
SP266-01
J.M. Ruiz, S.I. Garber, Q. Xu, J.C. Dick, G.K. Chang, and R.O. Rasmussen
This paper describes the enhancements made to the FHWA’s HIPERPAV software program for simulating early-age concrete pavement behavior. It gives a brief background describing the software, discusses the modeling improvements that have been made, and suggests future work for additional improvements. An enhanced moisture transport model has been developed and incorporated into the HIPERPAV software, and results show that the moisture distribution and associated stress/strength developments are significantly affected by the model parameters, environmental, and construction conditions. New inputs were included in the software to define the experimentally determined hydration curve parameters to improve predictions of degree of hydration and portland cement concrete (PCC) temperature development. A batch mode was added for analysis of multiple strategies at once, and a comparison module was created that allow users to compare simulation results from multiple strategies and run sensitivity analysis for multiple variables.
10.14359/51663268
SP266
Editor: Jussara Tanesi / Sponsored by: ACI Committee 118 and ACI Committee 236
This CD-ROM consists of ten papers that were presented by ACI Committees 236 and 188, at the ACI Fall 2009 Convention in New Orleans, LA, in November 2009. The papers cover durability models, early age models, virtual testing and mechanical behavior models. Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-266
10.14359/51663325
SP266-09
A. Sellier, E. Bourdarot, E. Grimal, S. Multon, and M. Cyr
Alkali silica reaction (ASR) causes premature and unrecoverable deteriorations of numerous civil engineering structures. ASR-expansions and induced cracking can affect the functional capacity of bridges and dams. Several hydraulic dams of Electricité de France (EDF) are concerned by ASR. Therefore, a behaviour model implemented in a finite element code has been developed in order to assess the safety level and the maintenance choices of these degraded structures. This approach has the particularity of modelling the ASR structural effects from the construction of the structure until today. It uses several ASR advancement variables, one for each aggregate size range of the affected concrete. These advancement variables depend on both the saturation degree and the temperature in the dam. The difficulty of using a classical residual expansion test on core samples to fit the model is pointed out, particularly when the swelling rate is slow due to low alkali content in the concrete. Thus, the authors propose an original approach combining additional tests and physical modelling to assess the chemical advancement of the ASR for each aggregate size of the affected concrete. Only the chemical advancement, which is a normalized variable linked to the residual reactive silica content, is measured in laboratory. The concrete residual potential expansion is not measured on laboratory tests but fitted through an inverse analysis based on a finite element structural calculation.
10.14359/51663276
SP266-10
K. Sobolev and A. Amirjanov
A simulation algorithm was developed for modeling the dense packing of large assemblies of particulate materials (in the order of millions). These assemblies represent the real aggregate systems of portland cement concrete. Two variations of the algorithm are proposed: Sequential Packing Model and Particles Suspension Model. A developed multi-cell packing procedure as well as fine adjustment of the algorithm’s parameters were useful to optimize the computational resources (i.e., to realize the trade-off between the memory and packing time). Some options to speed up the algorithm and to pack very large volumes of spherical entities (up to 10 millions) are discussed. The described procedure resulted in a quick method for packing of large assemblies of particulate materials. The influence of model variables on the degree of packing and the corresponding distribution of particles was analyzed. Based on the simulation results, different particle size distributions of particulate materials are correlated to their packing degree. The developed algorithm generates and visualizes dense packings corresponding to concrete aggregates. These packings show a good agreement with the standard requirements and available research data. The results of the research can be applied to the optimal proportioning of concrete mixtures.
10.14359/51663277
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer