International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 92 Abstracts search results

Document: 

SP228

Date: 

June 30, 2005

Author(s):

Editor: Henry G. Russell

Publication:

Symposium Papers

Volume:

228

Abstract:

SP-228CD This CD-ROM of Special Publication 228 contains the papers presented at the Seventh International Symposium on the Utilization of High-Strength/High- Performance Concrete that was held in Washington, D.C., USA, June 20-24, 2005. The symposium continued the success of previous symposia held in Stavanger, Norway, (1987); Berkeley, California (1990); Lillehammer, Norway, (1993); Paris, France, (1996); Sandefjord, Norway, (1999); and Leipzig, Germany, (2002). The symposium brought together engineers and material scientists from around the world to discuss topics ranging from the latest applications to the most recent research on high-strength and high-performance concrete. In the years since the first symposium was held in Stavanger, there has been worldwide growth in the use of both high-strength and high-performance concrete. In addition to more research and applications of traditional types of high-performance concrete, the use of self-consolidating concrete and ultra-high-performance concrete has moved from the laboratory to practical applications. This publication offers the opportunity to learn the latest about these developments.

DOI:

10.14359/16471


Document: 

SP228-21

Date: 

June 1, 2005

Author(s):

A. Bonakdar, M. Bakhshi, and M. Ghalibafian

Publication:

Symposium Papers

Volume:

228

Abstract:

High Reactivity Metakaolin (HRM) is an engineered pozzolanic mineral admixture, reacting aggressively with calcium hydroxide which results in significant performance of concrete. HRM has been introduced to be a beneficial alternative for silica fume, required in the formulation of high strength/performance concrete. In this study, different aspects of concrete mechanical behaviors have been studied including compressive, flexural and splitting tensile strengths. Also some characteristics of concrete durability were investigated including water absorption, water penetration and gas permeability. In mixture proportioning, 5%, 10% and 15% of cement content is replaced by HRM or silica fume for comparative study. It was observed that both concrete with HRM and silica fume would perform almost the same in improving the mechanical properties of the materials. However in the case of workability and durability, a better performance was obtained in concrete with HRM. It was concluded from the investigation that HRM could be an appropriate substitute for silica fume in producing high performance concrete.

DOI:

10.14359/14476


Document: 

SP228-01

Date: 

June 1, 2005

Author(s):

S.N. Vanikar and L.N. Triandafilou

Publication:

Symposium Papers

Volume:

228

Abstract:

The utilization of high performance concrete (HPC) has increased substantially in the last decade. HPC can provide enhanced mechanical and durability properties and at the same time allow efficient placement and finishing. HPC has been utilized for cost-effective construction of bridges, buildings and pavements in most countries. The Federal Highway Administration (FHWA) has played a key role in the HPC technology transfer from research and development to routine practice for bridge and pavement design and construction. FHWA’s HPC implementation activities began in 1991. HPC implementation for highway bridges in the USA has been a success story. The success has been largely due to a long-term continuing partnership between FHWA, State Departments of Transportation, American Association of State Highway and Transportation Officials (AASHTO), local agencies, industry and academia. This paper provides an historic perspective on the HPC implementation activities since the Strategic Highway Research Program (SHRP) in late 1980’s and the subsequent programs and activities. Forty-four State Departments of Transportation have utilized HPC. HPC implementation has contributed significantly to improvements in highway infrastructure. Implementation of the long-term strategic plan developed by the industry will further contribute toward meeting the goals which include reduced congestion and improved safety, trained workforce, reduced life cycle costs and improved quality as well as reliability.

DOI:

10.14359/14457


Document: 

SP228-95

Date: 

June 1, 2005

Author(s):

A. Yonekura, H. Ito, S. Wakasugi, S. Goto, S. Numata, and H. Maeda

Publication:

Symposium Papers

Volume:

228

Abstract:

This study deals first with the deterioration of glass fiber in mortar due to the alkali of cement and how to improve the deterioration of the glass fiber in mortar using special admixture of blast furnace fume (BFF). The deterioration is estimated by an accelerated test for flexural strength of mortar stored in water at 80 °C for 3 weeks. Secondly, the deterioration of mortar due to sulfuric acid attack using blast furnace fume(BFF) is investigated. Dust collected from the top of Chinese small-sized iron blast furnaces is called BFF in Japan , and is used as admixture for high strength concrete in China. BFF is composed of very fine particles with spherical shape. Its average grain size is several micrometers in diameter. Test results of this first study shows that the deterioration of glass fiber in mortar due to alkali is not improved by using BFF alone but is significantly improved by using both BFF and blast furnace slag (BFS) or silica fume (SF). Concerning acid attack, it is found that the deterioration of mortar in dilute sulfuric acid is significantly decreased by using both of BFF and BFS or SF.

DOI:

10.14359/14550


Document: 

SP228-96

Date: 

June 1, 2005

Author(s):

C. Magureanu, B. Heghes, and B. Rosca

Publication:

Symposium Papers

Volume:

228

Abstract:

Chemical attack poses a serious problem for concrete structures in severe environments. This investigation deals with exposure of high strength/high performance concrete to sulfate attack in a controlled environment. Experimental tests consisted of measuring the compressive strength, tensile strength and modulus of elasticity after 3 years of exposure to corrosive conditions consisting of chemical solutions containing 1%(NH4)2SO4 and 2%(NH4)2SO4.

DOI:

10.14359/14551


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer