ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 49 Abstracts search results
Document:
SP209-02
Date:
September 26, 2002
Author(s):
G.C. Hoff
Publication:
Symposium Papers
Volume:
209
Abstract:
An extensive laboratory program was initiated in the early 1980's to develop high-strength lightweight concrete for use in offshore oil and gas structures in severe marine environments. From the results of that development program, four mixtures were chosen to be evaluated under field conditions. Large prisms (305 by 305 by 914mm) of each mixture were placed in the tidal zone at the U.S. Army Corps of Engineers Severe Weather Exposure Station on the border between Canada and the United States. The mixtures used an expanded slate aggregate from the USA and a pelletized clay aggregate from Japan. All mixtures contained silica fume and had total binder content from 494 to 556 kg/cu m with water-binder ratios of 0.28 by mass. The concrete density varied from 1800 to 1990 kg/cu m, with 90-day strength from 60 to 73 MPa depending on the mixture. The prisms under-went annual visual and non-destructive evaluations. After 10-years exposure in the tidal zone, the prisms were removed to the laboratory where they were examined for strength, robustness and chloride ion penetration. This paper reports the results of the test program. In general, the overall performance looks very good.
DOI:
10.14359/12492
SP209-03
P.K. Mehta
Thermal cracking is a serious problem with modern portland-cement concrete structures, especially cast-in-place massive elements made with relatively high cement content and cured under hot-weather conditions. From theoretical considerations and field experience it is concluded that blended portland-cement concrete mixtures containing 50 percent or more ASTM Class F fly ash by mass of the total cementitious material perform much better under these conditions.
10.14359/12493
SP209-04
T. Horiguchi, T. Takano, N. Saeki, and T. D. Lin
High-strength concrete shows particular characteristic behavior at ele- vated temperatures, such as explosive spalling, that is rarely observed in normal-strength concrete. This behavior has been attributed to the very dense concrete matrix usually associated with high-strength concrete. This paper presents the effect of fiber reinforcement on mitigation of explosive spalling and residual properties of high-strength concrete under elevated temperatures (600°C). The experimental work has been carried out on the influ- ence of three parameters associated with fire resistance. These three parameters are an addition of polypropylene fibers andor polymer beads, the moisture content of the concrete and the water to cement ratio. The experimental results showed that the internal temperature elevation was mitigated in the test specimens, that contained the fibers or beads, that were melted by heating, by low cement-water ratio and by high moisture content. The accompanying strains due to heating at these conditions were reduced in the test specimens.
10.14359/12494
SP209-01
R. Rivera-Villarreal and J.M. Rivera-Torres
This paper provides results of different types of curing in hot weather environment on the compressive strength of concrete made with portland cement and complementary cementitious materials (CCM) such as natural pozzolans, fly ash (FA), granulated blast furnace slag (GBFS), and silica fume (SF). In all concrete mixtures, a superplasticizing admixture (SPA) was used. Nine series of concrete mixture were made. In seven of them (1,2,3,4,5, 6 and 9) the normal portland cement (NPC) content was 200 kg/m3 and in two of them (7 and 8) the same amount of cement was used but it was a portland-natural pozzolan cement (PNPC). The CCM varies from 9.9 to 60.6% of the total cementitious material. The W/C in all series was 0.70 when using NPC or PNPC. The W/C+CM varied from 0.28 to 0.63. In all series the same amount of 1260 kg/m3 of coarse aggregate was used. Five different ways of curing were used. One was the initial and final ASTM curing at 23°C up till the age of testing as reference, and four different ways of curing in hot weather environment at 37°C for the first 24h were used. These final curings were: A) ASTM; F) three day and G) seven-day water spray for 15 minutes every 2h; and (E) covered by two layers of membrane. Adequate compressive strength development (CSD) can be obtained using CCM but very good curing is necessary. Generally, by casting specimens at 37°C and put them under ASTM curing next day at 231t2"C (A), the strength at 28 days was lowered by about 8% and at six months by about 8% lower than these casting at 23°C. Membrane curing was less effective at later ages mainly when fly ash was used. There exist an optimum amount of fly ash to obtain maximum compressive strength at later ages.
10.14359/12491
SP209-48
R. K. Devalapura, J. M. Seng, M. F. McBride, D. W. Winiarski, and B. D. Johnson
When insulated concrete sandwich panels are used in the envelope of a building, the experior and interior are subjected to two different environments. The exterior concrete wythe is subjected to outside weather swings in the temperature and humidity causing thermal expansion and contraction, whereas the interior is exposed to a controlled steady room temperature environment. Dimensional change in the panel depends primarily on the height of the panel and the relative change in temperature. The severity increases when the outside concrete wythe of a tall panel is supported (and hence constrained) on the foundation dlowing vertical movements only at the top. If these weather cyclic movements are restricted, the panels may experience cracking and eventually may experience a premature failure. Therefore, the tie system used in the panels should be flexible enough to accommodate these differential movements. This often is the most critical issue in the service life of the building when sandwich panels are used. There is no standard test method available to evaluate the thermal non-uniform cyclic behavior of insulated panel systems. The authors have followed a sci- entific approach to evaluate these stresses by subjecting the ties to real life cycles occurring over a period of time. The system used in this study includes a low-conductivity polymer connector with extruded polystyrene rigid foam insulation. The testing was continued until the failure of the system or to more than 100 years of equivalent cycling (the expected service life of the building), whichever is less. This paper focuses on the methodology developed and parameters considered in developing the criteria for testing weather cycles. The procedure may be followed to evaluate any given insulated panel system to predict its long-term durability.
10.14359/12538
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer