ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 97 Abstracts search results
Document:
SP188-86
Date:
August 1, 1999
Author(s):
H. A. Toutanji and M. Saafi
Publication:
Symposium Papers
Volume:
188
Abstract:
Current design methods for predicting deflections and crack widths at service load in concrete structures reinforced with steel bars may not be necessarily applicable in those reinforced with fiber reinforced polymer (FRP) bars. In this paper, methods for predicting deflections and crack widths and spacing of glass fiber reinforced polymer (GFRP) reinforced concrete beams were proposed. In order to use the effective moment of inertia for concrete beams reinforced with FRP bars, the effect of reinforcement ratios and elastic modulus of the FRP reinforcement were incorporated in Branson’s equation. This paper also presents a new equation to predict crack width. Six concrete beams reinforced with different GFRP reinforcement ratios were tested. Deflections and crack widths were measured and compared with those obtained by the proposed models. The comparison between the experimental results and those predicted was in good agreement.
DOI:
10.14359/5691
SP188-80
R. L. Hutchinson and S. H. Rizkalla
This paper summarizes research findings on the use of carbon fibre reinforced polymer (CFRP) sheets for shear strengthening of pretensioned AASHTO bridge girders. The research includes an experimental program conducted at the University of Manitoba using scale models of pretensioned concrete girders in composite action with the deck slab. Seven ten meter long beams were strengthened with three different types of CFRP sheets using ten different configurations and were tested to failure at each end. The paper describes the experimental program, test results, failure mechanisms and the effectiveness of each configuration of CFRP sheets. A rational model is introduced to define the contribution of the CFRP sheets to the shear resistance in addition to the contributions provided by the stirrups and the concrete for I-shaped pretensioned concrete members. Test results are used to verify the proposed model.
10.14359/5692
SP188-96
V. M. Karbhari, F. Seible, W. Seim, and A. Vasquez
Upgrading often becomes a necessity due to changes in usage of buildings due to factors such as deterioration and aging, change in occupancy, or the need for installation of facilities such as air-conditioning, heating, escalators, elevators, additional skylights, or new façade structures. In a number of cases upgrading is related to changes which affect the load bearing components of the structure. Fiber reinforced polymer matrix composites provide an efficient means of both strengthening slabs for enhanced load carrying capacity and for strengthening slabs after installation of cut-outs. This paper reports on a series of tests conducted to assess the comparative efficiencies of a commercially available strip form and a fabric form of material vis-à-vis strengthening ability and ductility. It is shown that material tailoring can result in significant changes in efficiencies. The extension of this to the rehabilitation of cut-outs is also detailed and aspects of an on-going full-scale test program in that area are elucidated.
10.14359/5703
SP188-22
A. La Tegola and O. Manni
Prevalently compressed concrete columns can be transversely confined in order to obtain increase in strength and ductility. Generally, two principal methodologies of advanced confinement are used: the “Wrapping” technique which consists of wrapped concrete columns using thin carbon or glass flexible straps epoxy-bonded concrete surface; and concrete filled FRP tubes (CFFT) in which the tube is the pour form, protective jacket, confining mechanism, and shear and flexural reinforcement. The purpose of this paper is to theoretically model the stress-strain behavior of concrete confined by FRP straps or tubes, evidencing the straight dependence of s - e curve on the hoop mechanical properties of the transverse composite reinforcement. The proposed model consists of a generalization of the theory of elasticity, i.e. a step by step application of Navier classical relations which define the stress-strain laws in states of triaxial stress. The theoretical results are compared with experimental compression tests carried out on ten cylindrical concrete specimens confined with two different typologies of fiber composite tubes.
10.14359/5626
SP188-23
H. Nagai, T. Kanakubo, Y. Jinno, Y. Matsuzaki, and S. Morita
This research aims on understanding the influence of the strengthening method using carbon fiber reinforced plastic (CFRP) sheets on the performance of 13 reinforced concrete columns with waist-high walls. Main parameters of the specimens include the thickness and height of the attached walls, axial load, and the amount of CFRP sheets. The strengthening method is done by wrapping the upper portion of the column with sheets in a closed form. Also, the waist-high walls are equipped with holes where the carbon fiber strands (CF-anchor) are inserted and anchored to the ends of the sheets attached only on the surface of the lower portion of the column. Test result show that there is a great improvement in the ductility of the shear-failure type specimens when strengthened with CFRP. Also with an increase in the amount of the sheets, the ductility is further enhanced. The specimens strengthened using CFRP with CF-anchor also show higher ductility than the specimen where only the upper column is strengthened. The bending and shear strengths of the columns with waist-high walls can be calculated by using effective column height he considering the presence of the wall portions.
10.14359/5627
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer