International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 15 Abstracts search results

Document: 

SP166-09

Date: 

December 1, 1996

Author(s):

Johan Silfwerbrand

Publication:

Symposium Papers

Volume:

166

Abstract:

Industrial floors of asphalt concrete or other bituminous products are deformed under sustained concentrated loads. They are also dark in color and difficult to clean. Consequently, they need to be renovated. The use of polymer-modified concrete (PMC) overlays is an interesting alternative. Reinforced and unreinforced overlays were subjected to static and rolling wheel loads. Reinforced PMC overlays on asphalt showed a high load-carrying capacity. Shrinkage tests were carried out on PMC prisms and on concrete and bituminous overlaid with PMC. A two-layer overlay with wear and leveling layers was less prone to shrinkage than an overlay solely consisting of awear layer.

DOI:

10.14359/1402


Document: 

SP166-10

Date: 

December 1, 1996

Author(s):

Carolyn Dry

Publication:

Symposium Papers

Volume:

166

Abstract:

This research concerns the release of liquid methyl methacrylate from inside of the porous fibers into hardened concrete matrices to reduce permeability. Low heat is applied to the composite. It melts the wax coating on the fibers and dries the matrix, both of which act to move the methyl methacrylate and wax out into the matrix surrounding the fiber. The heat is increased, and the monomer becomes polymerized in the dispersed state into the matrix. Research results showed reduction in matrix permeability.

DOI:

10.14359/1404


Document: 

SP166-14

Date: 

December 1, 1996

Author(s):

R.P. Webster, C.A. Miller, and J.J. Fontana

Publication:

Symposium Papers

Volume:

166

Abstract:

A methodology has been developed for designing precast, fiber reinforced polymer concrete (FPC) vaults to be used in underground applications. The approach used in the design was to consider the vault as a series of plates: cover, walls, and foundation slab. Each plate was subjected to loads resulting from soil pressure, live loading, and dead weight and was analyzed using classical plate theory. This approach was verified by testing two quarter-scale models of a typical vault. Upon completion of the laboratory evaluation, two vaults were designed for use as underground, natural gas regulator stations. The vaults were manufactured and subsequently placed into service by Brooklyn Union Gas Company, and the Consolidated Edison Company of New York.

DOI:

10.14359/1532


Document: 

SP166

Date: 

December 1, 1996

Author(s):

Editors: Jack J. Fontana, Al O. Kaeding, and Paul D. Krauss

Publication:

Symposium Papers

Volume:

166

Abstract:

SP-166 This volume contains 11 symposium papers that were presented at the 10th and 11th symposia that were held in Minneapolis, MN and Tarpon Springs, FL in 1993 and 1994 respectively. There were a total of four sessions, the first titled "Polymer Concrete Overlays," the second "Recent Innovations in Polymer Concrete Technology", the third and fourth "Structural Properties of Polymer Concrete, Part I and II."

DOI:

10.14359/14206


Document: 

SP166-02

Date: 

December 1, 1996

Author(s):

C. Vipulanandan, S. T. Mau, Syam K. Mantrala, and S. Wei

Publication:

Symposium Papers

Volume:

166

Abstract:

There is an interest in developing better performing (high strength and ductility) composite structural elements for construction and repair of onshore and offshore structures. In this study, composite structural elements that consist of filled columns and sandwich columns (two concentric circular steel tubes with polymer concrete sandwiched in between) were investigated as potential compression members. High-strength (480 Mpa) and low-strength (200 MPa) steel tubes conforming to ASTM A513 Type 5 and ASTM A500 Grade B, respectively, were used. The polymer concrete was polyester based with a compressive strength of 60 Mpa. Short composite columns, made of steel tubes of diameter-to-thickness ratios ranging from 16 to 170, were tested under monotonically increasing axial compression. It was observed that the composite columns had compressive strengths of 10 to 30 percent higher than that of the summation of the individual components. The ductility was much higher than that of the corresponding steel tubes. Relationships for predicting the initial modulus and peak load and corresponding strain of the sandwich column have been developed. A simple model was used to predict the load-strain history up to the peak load of the composite elements. The predictions agreed well with the test results.

DOI:

10.14359/1477


123

Results Per Page 




Edit Module Settings to define Page Content Reviewer