International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 23 Abstracts search results

Document: 

SP157-01

Date: 

October 1, 1995

Author(s):

R. Park

Publication:

Symposium Papers

Volume:

157

Abstract:

Gives an outline of the many significant and pioneering contributions made by Emeritus Professor Tom Paulay to the understanding of the behavior of reinforced concrete and to the design of reinforced concrete structures for earthquake resistance. Particularly innovative has been his research into the design of structural walls for earthquake resistance, including the concept of the use of diagonal reinforcement in coupling beams. Other internationally recognized research described include his outstanding investigations into the mechanisms of shear resistance of reinforced concrete, aggregate interlock across cracks, behavior of beam-column joints, and the capacity design and detailing procedures for structural walls and frames.

DOI:

10.14359/1042


Document: 

SP157-21

Date: 

October 1, 1995

Author(s):

D. C. Hopkins

Publication:

Symposium Papers

Volume:

157

Abstract:

The M7.8 earthquake which hit the Philippines in July 1990 caused extensive and varied damage to a wide range of structures, most of which were of reinforced concrete. Because U. S. codes are adopted in the Philippines, the event provides a unique opportunity for earthquake engineers worldwide to review their approaches to seismic design. This paper results from the author's involvement in a visit immediately after the event and his subsequent role, in 1991 and 1992, advising the Philippine government on reconstruction of damaged public buildings and infrastructure. Valuable insights into the real issues were gained through contact local consultants, government engineers, and government agencies, such as the Departments of Health and Education. The government's Earthquake Reconstruction Project is outlined and the effects of the earthquake briefly described as an introduction to the main issues: structural concepts, ductile detailing, construction practice and supervision, influence of "nonstructural" elements, and the value of site investigations. Examples are given to illustrate these issues in the Philippine context. The author concludes that proper attention to the basics is sufficient to significantly reduce earthquake risk, not only in the Philippines, but in many developing and other countries. In this International Decade for Natural Disaster Reduction, this has special relevance.

DOI:

10.14359/1043


Document: 

SP157

Date: 

October 1, 1995

Author(s):

Editors: Nigel Priestly, Michael P. Collins, and Frieder Seible

Publication:

Symposium Papers

Volume:

157

Abstract:

A total of 21 technical papers comprise this Special Publication which covers recent developments in lateral force transfer in buildings. Note: The individual papers are also available as .pdf downloads.. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP157

DOI:

10.14359/14197


Document: 

SP157-05

Date: 

October 1, 1995

Author(s):

O. Joh, Y. Goto, and T. Shibata

Publication:

Symposium Papers

Volume:

157

Abstract:

Based on the authors' previous tests, failure modes of beam bar anchorage with 90-degree bend used in reinforced concrete beam-column joints were classified into three types: a side split failure, a local compression failure, and a raking-out failure. To clarify the raking-out failure, the least understood of the modes, column type specimens with beam bars with 90-degree bend in the beam-column joints were tested under pullout loading at the bars. The specimen variables were development length, column depth, lateral reinforcement ratio, spacing between beam bars, and concrete compressive strength. From the test results, influence factors on the raking-out failure mode were discussed and an equation evaluating anchorage strength proposed.

DOI:

10.14359/981


Document: 

SP157-07

Date: 

October 1, 1995

Author(s):

R. C. Fenwick and B. J. Davidson

Publication:

Symposium Papers

Volume:

157

Abstract:

To survive a major earthquake, current practice requires seismic resistant frames to be designed to be ductile. To achieve the required level of ductility in multistory frames, the majority of the potential plastic hinge zones are located in the beams. The inelastic rotation, which may develop in these zones, arises predominately from the tensile yielding of the reinforcement. The associated compressive strains are small and, as a consequence, elongation occurs. Test results show that elongation on the order of two to four percent of the member depth develop in plastic hinge zones of beams subjected to cyclic loading before strength degradation occurs. The factors influencing elongation are reviewed in this paper. The results of a time history analysis, in which elongation effects are modeled, shows that this action, which is neglected in current design practice, has important implications for the detailing of columns and the design of supports for precast components and external cladding.

DOI:

10.14359/982


12345

Results Per Page 




Edit Module Settings to define Page Content Reviewer