ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 23 Abstracts search results

Document: 

SP157

Date: 

October 1, 1995

Author(s):

Editors: Nigel Priestly, Michael P. Collins, and Frieder Seible

Publication:

Symposium Papers

Volume:

157

Abstract:

A total of 21 technical papers comprise this Special Publication which covers recent developments in lateral force transfer in buildings. Note: The individual papers are also available as .pdf downloads.. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP157

DOI:

10.14359/14197


Document: 

SP157-15

Date: 

October 1, 1995

Author(s):

W. G. Corley

Publication:

Symposium Papers

Volume:

157

Abstract:

Two hypothetical reinforced concrete buildings (one with special moment resisting frames and the other with structural walls) were designed. Using a time-history inelastic behavior approach, both buildings were analyzed. Drifts were determined for these structures when subjected to severe earthquakes similar to those expected in North America. In addition, drifts associated with an analysis based on ground motions measured for the 1985 Mexico City earthquake were also determined. Measured drifts from components detailed under 1990's North American code requirements are compared with calculated building drifts. These comparisons indicate that the 1990 code requirements provide significantly more capacity than calculated to be needed for the structures and components considered. Finally, minimum drift requirements for components to be used in ductile frame buildings and in shearwall buildings are suggested.

DOI:

10.14359/984


Document: 

SP157-19

Date: 

October 1, 1995

Author(s):

P. Gergley

Publication:

Symposium Papers

Volume:

157

Abstract:

Earthquake-resistant design of reinforced concrete structures has special problems in moderate seismic zones if the possibility of a very large rare earthquake exists. This is the situation in central and eastern North America. The questions and difficulties associated with introducing a seismic design code for the first time are discussed. The seismic risk to a populated region is not reduced much for many years after the code takes effect; only the rehabilitation of existing structures will reduce the risk significantly in a meaningful time frame. The overall behavior of buildings, especially of existing older reinforced concrete buildings, is often nearly elasto-plastic in nature because a mechanism forms soon after the formation of the first hinge and there is little or no overstrength. This may not be an optimum design in most cases. The response of reinforced concrete buildings to moderate ground motions designed only for gravity loads is better than expected, with moderate drifts and no premature brittle failures in most building types. That is not the case for the rare catastrophic earthquake.

DOI:

10.14359/1010


Document: 

SP157-22

Date: 

October 1, 1995

Author(s):

F. Seible, G. R. Kingsley, and A. G. Kurkchubasche

Publication:

Symposium Papers

Volume:

157

Abstract:

The difficulties in assessing the probable deformation and force states of structural wall buildings under lateral earthquake forces were evaluated by means of laboratory test results from a five-story full-scale reinforced masonry structural wall research building tested to failure at the University of California, San Diego, under simulated seismic loads. The individual structural components and actions which contribute predominantly to the seismic response characteristics of a structural wall building, such as axial loads on walls, coupling between structural walls, lintel beam force, and deformation capacities, as well as floor and wall-flange participation were evaluated based on individual component tests, the full-scale prototype test, and parallel diagnostic analyses. The importance of a realistic assessment of these parameters in a capacity design approach for structural wall buildings was evaluated. The outline for rational design models which allow a prediction of the complex behavior characteristics of structural wall buildings for all design limit states is presented in this paper.

DOI:

10.14359/988


Document: 

SP157-07

Date: 

October 1, 1995

Author(s):

R. C. Fenwick and B. J. Davidson

Publication:

Symposium Papers

Volume:

157

Abstract:

To survive a major earthquake, current practice requires seismic resistant frames to be designed to be ductile. To achieve the required level of ductility in multistory frames, the majority of the potential plastic hinge zones are located in the beams. The inelastic rotation, which may develop in these zones, arises predominately from the tensile yielding of the reinforcement. The associated compressive strains are small and, as a consequence, elongation occurs. Test results show that elongation on the order of two to four percent of the member depth develop in plastic hinge zones of beams subjected to cyclic loading before strength degradation occurs. The factors influencing elongation are reviewed in this paper. The results of a time history analysis, in which elongation effects are modeled, shows that this action, which is neglected in current design practice, has important implications for the detailing of columns and the design of supports for precast components and external cladding.

DOI:

10.14359/982


12345

Results Per Page