International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 66 Abstracts search results

Document: 

SP145

Date: 

May 1, 1994

Author(s):

Editor: V.M. Malhotra

Publication:

Symposium Papers

Volume:

145

Abstract:

SP-145 In 1994, The Canada Centre for Mineral and Energy Technology (CANMET) in association with the America Concrete Institute, sponsored a third international conference on the Durability of Concrete This Special ACI publication presents the 65 conference papers accepter for publication. For Your Convenience, Durability of Concrete has been divided into two parts. Part 1, which contains 34 papers, covers the areas of: 1. Deicer Salt Scaling of Concrete 2. Freezing and Thawing Phenomenon 3. Performance of Concrete in Marine Environments 4. Corrosion of Steel to Fluoride-Ion Attach 5. And other Topics Part 2, containing 31 papers, covers the areas of: 1. Alkali-Aggregate Reactivity 2. Coatings for Concrete 3. Carbonation 4. High-Volume Fly Ash Concrete 5. Durability of Concrete

DOI:

10.14359/14185


Document: 

SP145-05

Date: 

May 1, 1994

Author(s):

M. Collepardi, L. Coppola, and C. Pistolesi

Publication:

Symposium Papers

Volume:

145

Abstract:

The authors indicate that, in addition to steel corrosion, calcium chloride can act specifically as an aggressive agent for concrete through the formation of calcium oxychloride (3CaO CaCl 2 15H 2O). This product is formed by reaction of CaCl 2 diffusing through the cover and Ca(OH) 2 produced by cement hydration. The main purpose of the paper was to study the influence of the cementitious system (portland cement with and without a pozzolanic addition) on the damaging effect caused by CaCl 2 used as a deicing agent. To block both steel corrosion and concrete deterioration, the reduction of the water-cement ratio in the concrete mix should be accompanied by the utilization of slag cement or pozzolanic cement. The slag content should be at least 50 percent of the cement, but silica fume (> 15 percent by weight of cement) instead of fly ash (30 percent) is preferred.

DOI:

10.14359/4543


Document: 

SP145-37

Date: 

May 1, 1994

Author(s):

J. S. Guedon and A. Leroux

Publication:

Symposium Papers

Volume:

145

Abstract:

Alkali-silica reaction is responsible for concrete cracking, but when initial microcracking is present, does it influence the reaction and, if so, how? This was the problem the authors tried to solve through the following experiments. Four sets of 7 x 7 x 28-cm test concrete bars were prepared with a potentially reactive aggregate. One set was kept as a control, while two others were mechanically microcracked by applying stresses corresponding to 75 and 100 percent of the breaking stress. The fourth set was used to determine the minimum stress that could be applied to the bars. The resulting microcracking was estimated by measuring the ultrasonic wave velocity and by scanning electron microscopy. The evolution of the disorders was tracked by measurement of dimensional variations. The bars were cured at 38 C (100 F) with a moisture content of 100 percent in accordance with standard testing procedure. After 2 years of observation, the authors noted the following developments. The original microcracking had significantly increased the speed of the material's response to the alkali reaction; at the same time, the number of disorders that were consequences of the reaction seemed noticeably higher. Also, cyclic behavior was evident, which induced a dormant stage corresponding to the filling of the microcracking by the reaction gel, and also induced an active stage leading to additional microcracking. Such a sequence of dormant and active stages should affect all the bars tested, but was actually totally evident only on the bars that were initially subjected to significant cracking. This study clearly shows the important role played by initial microcracking on the future of concrete and, consequently, the choice and implementation of solutions that could reduce concrete disorders.

DOI:

10.14359/4357


Document: 

SP145-40

Date: 

May 1, 1994

Author(s):

Y. Furusawa, H. Ohga, and T. Uomoto

Publication:

Symposium Papers

Volume:

145

Abstract:

Although aggregates in the concrete matrix are regarded primarily as inert, certain aggregates have been identified as deleterious due to their chemical reactivity in an alkaline environment. Despite extensive research on the various aspects of this problem, a rational model that comprehensively explains the rate of the chemical reaction and resulting expansion has not yet been presented. Paper deals primarily with modeling of the chemical reactions and ensuing expansion in the case of alkali-silica reaction. The chemical reaction phase has been assumed to be governed by the rate of diffusion of hydroxide and alkali ions into the aggregate. The model also assumes the existence of a porous zone around the aggregate and that expansion is initiated only after the amount of reaction products exceeds the volume of this porous zone. An attempt has also been made to discuss some experimental results in the light of the proposed model and provide some of the analytical results arrived at using the model. It was found that by carrying out a slightly modified version of the quick chemical test, the apparent diffusion coefficients of the hydroxide ions can be estimated and the results can be used to accurately estimate the expansion ensuing during the mortar bar tests. Analytical results also indicate that certain characteristic features of alkali-aggregate reaction-related expansion, such as the existence of an incubation period before the onset of expansion, varying rates of expansion, and the shapes of the expansion-time curves, can be explained using the model proposed by the authors.

DOI:

10.14359/4358


Document: 

SP145-18

Date: 

May 1, 1994

Author(s):

K. Sakai and S. Sasaki

Publication:

Symposium Papers

Volume:

145

Abstract:

This paper describes the results of a ten-year marine exposure test of reinforced concrete. Sixteen pre-cracked test specimens were examined. The target crack width was 0.2mm. The dimensions of the specimens were 15x15x100cm. Ordinary deformed bars and epoxy-coated deformed bars, as well as normal portland cement and portland blast-furnace slag cement were used. The water-cement ratio in the mixture proportions ranged from 0.320I to 0.483%. The effect of nitrite-based corrosion inhibitor was also examined. From the exposure test results, the following conclusions were drawn: When the water-cement ratio was low, the penetration of chloride ions into the concrete was low; the chloride-ion content on the surface of blast-furnace slag cement concrete was greater than on the surface of concrete made with ordinary cement, but was smaller inside; there was a tendency for the chloride-ion content around the reinforcing bars in concrete portions with small cracks to be greater than in portions with large cracks; ten years of exposure caused an increase in crack width due to the corrosion of the reinforcing bars; although the effectiveness of epoxy-coated reinforcing bars in preventing corrosion was obvious, severe corrosion was found in one coated bar. The epoxy-coated bars used were produced for the first time in Japan, and test results indicate that there were problems with the early production technology; there was no beneficial effect from corrosion inhibitor after ten years.

DOI:

10.14359/4109


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer