ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 56 Abstracts search results
Document:
SP138-02
Date:
September 1, 1993
Author(s):
Rajan Sen, Daniel Mariscal, and Mohsen Shahawy
Publication:
Symposium Papers
Volume:
138
Abstract:
A comprehensive durability study of S-2 glass-epoxy pretensioned beams exposed to wet-dry cycles in 15 percent salt solution indicated a complete loss of effectiveness within 3 to 9 months of exposure. Paper presents results of subsequent follow-up investigations to identify the cause of this deterioration and also to examine practical measures that could be used to prevent its occurrence. The analysis of the test results suggests that the most likely cause of failure was diffusion of hydroxyl ions from the concrete pore solution through the resin. This is supported by SEM micrographs of the failed beam. While these conclusions are valid only for the S-2 resin, diffusion is also likely to be a characteristic of other types of resins, e.g., vinylesters and polyesters. This makes long-term protection of glass fibers in concrete problematic.
DOI:
10.14359/3857
SP138-03
K. Mukae, S. Kumagai, H. Nakai, and H. Asai
Bond characteristics of FRP rod and concrete after freezing and thawing deterioration
10.14359/3858
SP138-14
H. Nakagawa, M. Kobayashi, T. Suenaga, T. Ouchi, S. Watanabe, and K. Satoyama
The three-dimensional fabric studied as reinforcement for concrete is a stereo-fabric made of fiber rovings, woven into three directions, and impregnated with epoxy resin. Fiber material, number of filaments, and distance between rovings can be varied easily. Efficient production is also possible, since three-dimensional weaving, resin impregnation, and hardening can all be done by an automatic weaving machine. The authors investigated the flexural and fire-resistance behaviors of three-dimensional fabric reinforced concrete (3D-FRC) toward applying the material to building panels. The fibers studied were carbon and aramid, and the matrix was vinylon short-fiber reinforced concrete. The results demonstrate that 3D-FRC panels have sufficient strength and rigidity to withstand design wind loads, and the fire resistance of 60 min was achieved. The 3D-FRC panels have been used for curtain walls, parapets, partition walls, louvers, etc., and installations amount to 7000 m 2.
10.14359/4262
SP138-15
Craig Ballinger, Toshikatsu Maeda, and Tokitaro Hoshijima
Presents information on the development and use of carbon fiber reinforced plastic (CFRP) to strengthen reinforced concrete chimneys, bridge piers, and beams in Japan; bridge beams in Switzerland; and ongoing structural research and use of fiber reinforced plastic (FRP) composite materials to strengthen such structures in the U.S. The concept and equipment for strengthening existing reinforced concrete chimneys by wrapping them with carbon reinforced plastic materials began in Japan. The procedure permitted earthquake-damaged chimneys to be repaired without taking them out of service. Research in Switzerland has led to the use of adhesively bonded sheets of carbon reinforced plastic laminates to strengthen existing bridges. This concept is an extension of use of bonded steel plates to strengthen many types of structures throughout Europe. Research, development, and some use of these techniques has been done in the U.S.
10.14359/4263
SP138-22
F. S. Rostasy
FRP are new materials for structural engineers. Therefore, an overview on the important fiber properties, matrix resins, and composite elements becomes necessary to show the assets and drawbacks of FRP and to illustrate their potentials and limits. Besides several other fields, concrete prestressing seems to have become a promising field of application of FRP. In prestressed concrete construction, high strength and good corrosion resistance of FRP can be utilized optimally. In this field of application, FRP can compete with prestressing steel, especially in such cases in which the corrosion protection of prestressing steel becomes expensive or remains tarnished by residual risks. The post-tensioning of concrete structures requires anchorages with a high mechanical efficiency. The main avenues of development are discussed, and the necessary future research is outlined.
10.14359/4264
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer