ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 22 Abstracts search results
Document:
SP124-09
Date:
September 1, 1990
Author(s):
R. G. Oesterle, D. M. Schultz an J. D. Glikin
Publication:
Symposium Papers
Volume:
124
Abstract:
Thin-walled glass fiber reinforced concrete (GFRC) panels are used as facade systems for commercial structures. Wind load and gravity load are primary load cases typically considered in panel design. However, since the GFRC skin is relatively thin, it responds rapidly to thermal and moisture variations. Therefore, minimizing restraint of the GFRC skin movement under varying environmental conditions and/or determination of stresses resulting from restrained movement are also primary considerations in GFRC facade panel design. Paper addresses concepts for design of GFRC panels including material behavior, design strengths, and loading combinations. Discussions of load conditions and recommended design considerations are presented for the effects of manufacturing, handling, and erection loading, gravity loading, wind loading, and loading due to external and internal restraint of moisture and thermal movements. Paper is based on the authors' experiences during their involvement in the design process for several new GFRC installations along with observations made and lessons learned in evaluation of GFRC facade failures
DOI:
10.14359/3134
SP124-19
T. S. Krishnamoorthy, V. S. Parameswaran, M. Neelamegam, and K. Balasubramanian
Precast thin ferrocement planks have replaced wood for a variety of applications. Present knowledge about joining them using steel bolts or similar means is very limited. While bolted connections are commonly employed in steel construction, their suitability for connecting precast reinforced concrete or ferrocement elements is yet to be fully investigated, particularly when subjected to both bending and direct tension. A series of tests were carried out at the Structural Engineering Research Centre, Madras, India, on precast ferrocement planks connected together using steel bolts for transferring tension and flexural moment
10.14359/3356
SP124-08
Mobasher and S. P. Shah
Traditionally, the first cracking strain of plain matrix is used as the material property in the fiber reinforced cement-based composites. It is used to indicate the tensile strength, and thus termination of the contribution of the matrix phase. In the presence of high volume fraction of fibers, formation of the first crack does not necessarily lead to the fracture instability; thus, matrix is able to carry increasing loads. The strength of the matrix is thus dependent on the type, volume fraction, bond, and strength of the fibers. Paper investigates the tensile stress-strain response of cement paste in the presence of glass fibers. A test procedure is described that can characterize the toughening effect of various fiber types on the matrix properties.
10.14359/2299
SP124-11
A. Bentur
Treatments of AR glass fibers in silica fume slurry prior to their incorporation in cementitious matrix was found to be an effective means for improving the durability performance of GFRC composites. The improvement was found to be dependent on the extent of penetration of the silica fume particles into the spaces between the filaments during the slurry treatment. In a glass fiber fabric, heavily coated with polymer, the penetration was hindered and therefore the advantage offered by the silica fume treatment was not as great as in continuous glass fiber strands that were more readily wetted by the slurry.
10.14359/2311
SP124-13
N. C. Kothari
Strength properties of steel fiber reinforced concrete and plain concrete specimens subjected to normal atmospheric exposure and accelerated cyclic testing in marine environment were examined. The concrete mix design consisted of cement:sand:aggregate in ratio of 1:1.96:3.01 with water-cement ratio of 0.6. The steel fibers, 10 mm in length, were added in volume of 0.0, 0.6, and 1.2 percent of the mix. Strength properties--compressive, flexural, and tensile strength of the concrete specimens containing steel fibers--showed considerable improvement over those obtained in the plain concrete exposed to the normal atmospheric condition. Both steel fiber reinforced and plain concrete specimens subjected to accelerated cyclic testing at 60 C, 24-hr cycle in marine environment, showed that the addition of fibers provided considerable improvement in strength properties. However, corrosion of the fibers was observed at or near the surface, and continued to worsen after 20 cycles. Specimens with 1.2 volume percent of steel fibers exhibited the largest increase in compressive and flexural strength in both test conditions, normal atmospheric and accelerated cyclic testing.
10.14359/2322
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer