ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 22 Abstracts search results
Document:
SP124-21
Date:
September 1, 1990
Author(s):
Morris Schupack
Publication:
Symposium Papers
Volume:
124
Abstract:
The background to the development of two types of thin, fabric-reinforced, portland cement concrete sheets is described and range of properties given. Both normal weight and lightweight mortars (including cellular mortars) were used as a matrix. Glass or synthetic fiber continuous reinforcement in the form of fabric scrims and/or nonwoven three-dimensional fabric were used. The materials developed are potential substitutes for plywood, cement asbestos, and other types of sheet material that require the properties of weather resistance, incombustibility, nonbiodegradability, and economy. The test results also suggest that the matrix and reinforcement concepts developed will lead to applications in other reinforced concrete uses. The thin sheet materials lend themselves to easy manufacture in a comparatively simple plant.
DOI:
10.14359/2333
SP124-12
I. R. K. Greig
The inherent light weight, toughness, low permeability, smooth surface finish and resistance to shrinkage cracking have all contributed to GFRC being an attractive alternative to traditional materials in the following areas of mining: 1) stabilization of rock tunnels by in situ spraying of thin skins; 2) construction of ventilation stopping walls both by a surface bonding technique and as a direct substitute for simple lime and sand mortars; 3) fire protection of timber packs by lightweight GFRC renders with improved adhesion and impact strength; 4) manufacture of drainage channels which are lighter in weight than their concrete counterparts and tougher than the asbestos cement alternatives; and 5) production of permanent formwork, which is lighter in weight and has a better surface finish than concrete and is much more efficient than the use of temporary shuttering.
10.14359/3350
SP124-19
T. S. Krishnamoorthy, V. S. Parameswaran, M. Neelamegam, and K. Balasubramanian
Precast thin ferrocement planks have replaced wood for a variety of applications. Present knowledge about joining them using steel bolts or similar means is very limited. While bolted connections are commonly employed in steel construction, their suitability for connecting precast reinforced concrete or ferrocement elements is yet to be fully investigated, particularly when subjected to both bending and direct tension. A series of tests were carried out at the Structural Engineering Research Centre, Madras, India, on precast ferrocement planks connected together using steel bolts for transferring tension and flexural moment
10.14359/3356
SP124-01
Kenneth D. Vinson and James L. Daniel
Describes the investigation of a new range of cellulose fibers suited to the reinforcement of a portland cement matrix. This investigation indicated that fibers selectively derived from high-density summerwood are better suited for reinforcement than is the unmodified pulp that contains a large measure of fibers derived from springwood as well as summerwood. Another cellulose fiber material, termed expanded fiber because of its finely fibrillated microstructure, was indicated to have potential as a processing aid. Expanded fiber displayed excellent suspending and retention properties and imparted relatively high uncracked strength to finished composites. Overall, substantial performance differences were observed comparing, tests on wet versus dry specimens and the long-term durability was not evaluated. Despite these limitations, flexural stress/strain performance of the cellulose reinforced composites compared quite well to asbestos and glass fiber reinforced composites. The cellulose composites had substantially more ductility than asbestos cement; in this regard, the load-deflection curve was similar to glass reinforced cement.
10.14359/2230
SP124-03
T. Ando, H. Sakai, K. Takahashi, T. Hoshijima, M. Awata, and S. Oka
The fabrication, properties, and application of carbon fiber reinforced cement (CFRC) product made of coal tar pitch-based high-performance carbon fiber are presented. The experiments were conducted by mixing the chopped carbon fiber strands with cement and sand to obtain CFRC. The mixing test results revealed that this type of carbon fiber disperses quickly and uniformly in ordinary mortar. No special type of mixer is required. To optimize the characteristics of CFRC, experimental analysis was conducted on batches made in a mortar mixer regarding the fiber properties and mix proportion. The relationships of these parameters to the mechanical properties were examined. It was revealed that the parameters determining the apparent viscosity F (flow index) of CFRC slurries are fiber diameter í1, filament number n, specific surface area S, and fiber volume fraction Vf. It was also revealed that the parameters determining the strength of the hardened body were fiber tensile strength TS and Vf. The flexural strength of the 20 mm thick CFRC is about 3 to 4 times greater than that of plain mortar. This CFRC is also stronger and more durable than other FRC under the same conditions. High productivity, light weight, and weatherability characterize this new CFRC. These characteristics being appreciated, precast CFRC products have been increasingly used in construction in Japan. Some detailed descriptions of the practical applications are also made.
10.14359/2239
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer