ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 20 Abstracts search results
Document:
SP123-01
Date:
January 1, 1991
Author(s):
PC. Cheung, T Paulay, and R. Park
Publication:
Symposium Papers
Volume:
123
Abstract:
As part of a United States/New Zealand/Japan/China collaborative research project, interior and exterior beam-column joint subassemblages with floor slabs of prototype two-way and one-way reinforced concrete building frames were designed for earthquake resistance using the current New Zealand concrete design code, NZS 3101:1982. Three full-scale subassemblages as designed were constructed and tested under quasi-static cyclic loading which simulated severe earthquake actions. The overall performance of each subassemblage during the tests was satisfactory in terms of strength and ductility. The joint core and column remained essentially undamaged while plastic hinges formed in the beams. The strong column-weak beam behaviour sought in the design, desirable in tall ductile frames designed for earthquake resistance, was therefore achieved. Although the joint cores of the subassemblages remained in the elastic range, joint core shear deformations contributed significantly to the interstorey drifts. Also, a significant proportion of the slab bars in tension contributed to the negative moment flexural strength of the beams. The performance of the one-way joint was superior to the performance of the two way joints.
DOI:
10.14359/10258
SP123-02
Y. Kurose, G. N. Guimaraes, L. Zuhua, M. E. Kreger, and J.O. Jirsa
Three reinforced concrete beam-column connections, each with a slab were tested under the U.S.-Japan-New Zealand-China cooperative research program on design of beam-column connections. Two of the specimens were subjected to both unidirectional and bidirectional cyclic loads. Results of the tests are described with the aid of story shear drift angle relations, story shear orbits, measured joint shear deformations, and plots of drift angle components. Various methods for calculating joint shear strength are evaluated in light of the test results. Test data are also used to determine slab effective widths for use in calculation of uncracked beam stiffness and beam flexural capacity.
10.14359/2807
SP123-03
Zhu Bolong and Chen Yuzhou
The results of three full-scale reinforced concrete beam-column joint specimens subjected to one- and two-directional reversed loading are presented in this paper. The influences on aseismic behavior of beam-column joints with different loading systems and monolithic slabs have been analyzed. Also, the relevant provisions for joints in the Chinese design code for reinforced concrete structures have been checked by test results, and some recommendations for beam-column joint design are given.
10.14359/2815
SP123-04
K. Kazuhiro, O. Shunsuke, and A. Hiroyuki
Summarizes a series of research efforts at the University of Tokyo leading to the development of earthquake-resistant design criteria for reinforced concrete interior beam-column joints. The design criteria emphasize the protection of the joint to an acceptable deformation level of a frame structure during an intense earthquake. For the design against shear, shear-resisting mechanisms by truss and concrete compression strut, the role of joint lateral reinforcement, and the effect of transverse beams and slabs were studied experimentally. The requirement for beam bar bond was discussed on the basis of nonlinear earthquake response analysis.
10.14359/2822
SP123-05
Shunsuke Otani
The Architectural Institute of Japan (AIJ) published its 1988 draft design guidelines for earthquake-resistant reinforced concrete buildings based on ultimate strength concept as a first attempt to develop an ultimate strength design procedure in Japan. This paper introduces the general concept of the design procedure, and explains in detail the design requirements and background information for reinforced concrete beam-column joints of the AIJ guidelines. Based on experimental evidence, the amount of lateral reinforcement in the joint required is significantly reduced from ACI requirements.
10.14359/2829
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer