International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 25 Abstracts search results

Document: 

SP122-01

Date: 

June 1, 1990

Author(s):

Bryant Mather

Publication:

Symposium Papers

Volume:

122

Abstract:

Concrete will be immune to the effects of freezing and thawing if: 1) it is not in an environment where freezing and thawing take place, i.e., where freezable water may be present in the concrete; 2) there are no pores in the concrete large enough to hold freezable water when freezing takes place (i.e., no capillary cavities); 3) during freezing of freezable water, the pores containing freezable water are never more than 91 percent filled, i.e., not critically saturated; 4) during freezing of freezable water, the pores containing freezable water are more than 91 percent full and the paste has an air-void system with an air bubble located not more than 0.2 mm (0.008 in.) from anywhere (L ó 0.2 mm), sound aggregate, and moderate maturity. Sound aggregate is aggregate that does not contain significant amounts of accessible capillary pore space that is likely to be critically saturated when freezing occurs. The way to establish that such is the case is to subject properly air-entrained, properly mature concrete, made with the aggregate in question, to an appropriate laboratory freeze-thaw test, such as ASTM C 666, Procedure A. Moderate maturity means that the original mixing water-filled space has been reduced by cement hydration so that the remaining capillary porosity that can hold freezable water is a small enough fractional volume of the paste so that the expansion of the water on freezing can be accommodated by the air-void system.

DOI:

10.14359/2418


Document: 

SP122-02

Date: 

June 1, 1990

Author(s):

P. K. Mehta

Publication:

Symposium Papers

Volume:

122

Abstract:

The commercial utilization of high-strength concrete with 60 to 120 Mpa compressive strength is a recent phenomenon; therefore, long-term field experience with regard to durability in corrosive environments is not available. In this paper, a critical review of the factors necessary to obtain high strength and high durability is presented. Typically, the concrete mixtures contain high cement content, low water content, and several admixtures, such as a superplasticizer, a pozzolan, and at times an air-entraining agent. When properly placed, consolidated, and cured, such mixtures should have low permeability and high durability to corrosive environments. However, there is some concern that microcracking in the aggregate-cement paste transition zone, possibly due to a variety of causes, may impair the impermeability and durability. The results of a recent investigation are discussed, which show that the aggregate type can play an important role in controlling the strength of the transition zone and, therefore, the degree of potential microcracking of concrete in service.

DOI:

10.14359/2428


Document: 

SP122

Date: 

June 1, 1990

Author(s):

Editor: David Whiting / Co-Sponsored by: ACI Committees 201 and ACI Committee 222

Publication:

Symposium Papers

Volume:

122

Abstract:

"A collection of 24 papers form an international panel of experts on topics ranging from fundamental laboratory studies of concrete durability to case histories of concrete rehabilitation. The volume is arranged in three parts. Part 1: covers the more fundamental aspects and laboratory investigations. Topics include freeze-thaw resistance, durability of high strength concrete, corrosion of reinforcing steel, air voids in concrete, and effects of high range water-reducers. Part 2: covers field studies where concrete is exposed to natural conditions. Topics include carbonation of concrete, deicer scaling resistance of roller compacted concrete pavements, performance in marine environments, and microbiologically-induced deterioration. Part 3: covers case histories of the performance and rehabilitation of concrete structures in severe service environments. The types of structures include cooling tower shells, precast prestressed concrete conveyor bridge, heavy duty dock, elevated road way, and a masonry structure under corrosive exposure." Note: The individual papers are also available as .pdf downloads.. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP122

DOI:

10.14359/14155


Document: 

SP122-23

Date: 

June 1, 1990

Author(s):

David J. Akers

Publication:

Symposium Papers

Volume:

122

Abstract:

Reinforced concrete masonry structures can be effectively used in corrosive environments provided that the design is based upon a rational assessment of the exposure condition. An investigation of wall that had 6000 g of muriatic acid and 11,000 g of sodium hypochlorite stored along its exterior face indicated accelerated deterioration of the wall due to inadequate design and no protection afforded to the wall when the building's usage was changed from general warehouse to chemical storage. Poor construction practices also contributed to the distressed condition. The investigation utilized electrical, visual, and chemical means of assessing the structures's condition. The primary tool was a copper-copper sulfate (Cu-CuSO4) half cell conforming to ASTM C 876. The resulting equipotential contour map provided valuable information regarding the wall's corrosion potential. Visual observations of exposed, corroded reinforcing steel confirmed the half-cell readings. Chemical analysis of block, mortar, and grout samples extracted from the wall revealed high but inconsistent water-soluble chloride ion contents.

DOI:

10.14359/3754


Document: 

SP122-24

Date: 

June 1, 1990

Author(s):

Mohammed Maslehuddin

Publication:

Symposium Papers

Volume:

122

Abstract:

The service conditions for concrete construction in the coastal areas of the Arabian Gulf are considered to be those of one of the most aggressive environments in the world. Deterioration of hardened cement paste due to salt attack is one of the leading reasons for poor performance of concrete structures in this region. Calcium, magnesium, sodium salts of sulfates, chlorides, and carbonates extensively contaminate the ground, groundwater, and the aggregates. In such an environment, structures built with concrete which can be rated as good in temperate climatic conditions can hardly last for a decade or two. Field and laboratory studies are in progress at King Fahd University of Petroleum and Minerals at Dhahran, Saudi Arabia, to formulate preventive measures. As a part of this endeavor, the performance of in-service concrete structures is monitored. This paper details the investigations carried out to evaluate the performance of these concrete structures. Data developed in this investigation show that the aggressive service environment is the major cause for concrete deterioration, as such appropriate mix design techniques and construction practices are to be adopted for the production of a very dense and impermeable concrete.

DOI:

10.14359/3764


12345

Results Per Page 




Edit Module Settings to define Page Content Reviewer