ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 25 Abstracts search results
Document:
SP122-14
Date:
June 1, 1990
Author(s):
E. F. O'Neil,
Publication:
Symposium Papers
Volume:
122
Abstract:
Paper acquaints those interested in concrete durability with the scope and duration of a new long-term field and laboratory testing program which began in 1989 and will continue through 2004. It has been commissioned by the Reinforced Concrete Research Council (RCRC) of the American Society of Civil Engineers, and is designed to compare the effects of warm and cold seawater environments on the durability of reinforced and prestressed concrete elements made using concrete materials and additives which have become available over the past 15 years. It is a follow-up study to those conducted by the U.S. Army Corps of Engineers, and guided by the RCRC, during the period 1950 through 1976.
DOI:
10.14359/3746
SP122-23
David J. Akers
Reinforced concrete masonry structures can be effectively used in corrosive environments provided that the design is based upon a rational assessment of the exposure condition. An investigation of wall that had 6000 g of muriatic acid and 11,000 g of sodium hypochlorite stored along its exterior face indicated accelerated deterioration of the wall due to inadequate design and no protection afforded to the wall when the building's usage was changed from general warehouse to chemical storage. Poor construction practices also contributed to the distressed condition. The investigation utilized electrical, visual, and chemical means of assessing the structures's condition. The primary tool was a copper-copper sulfate (Cu-CuSO4) half cell conforming to ASTM C 876. The resulting equipotential contour map provided valuable information regarding the wall's corrosion potential. Visual observations of exposed, corroded reinforcing steel confirmed the half-cell readings. Chemical analysis of block, mortar, and grout samples extracted from the wall revealed high but inconsistent water-soluble chloride ion contents.
10.14359/3754
SP122-11
N. M. Vanderhorst and D. J. Janssen
Some properly proportioned portland cement-concrete mixtures occasionally show distress when exposed to freezing and thawing, while some mixtures that do not contain entrained air may appear to perform adequately despite exposure to freezing and thawing. Obviously, there is a difference in the severity of freezing-and-thawing environments. The factors affecting the severity of freezing-and-thawing environments include the temperature and moisture conditions and salt exposure. These factors are examined, along with materials properties that relate to these factors. Comparisons are made between laboratory and field moisture and thermal conditions, and the damage mechanisms most appropriate for each set of conditions are discussed. Conclusions are drawn concerning the definition of a truly severe freezing-and-thawing environment in the field, and a qualitative relationship between the severity of freezing-and-thawing environments and cooling rates is proposed.
10.14359/2497
SP122-13
J. Marchand,M. Pigeon, H. L. Isabelle, and J. Boisvert
Twenty roller-compacted concrete loads were cast at St. Constant near Montreal during the fall of 1987. Three types of cement (Canadian Types 10, 30, and 10SF), four different aggregate gradings, and three water-cement ratios (0:27, 0:33, and 0:35) were used to prepare the various mixes. Most of these mixes contained an air-entraining admixture. Approximately one-third of each concrete surface was moist-cured for 7 days, another third was covered with a white curing compound, and the remaining portion was not cured at all. Samples representative of all mixes and all curing conditions were taken from the pavement after 28 days and then tested for freeze-thaw durability (ASTM C 666) and deicer salt scaling resistance (ASTM C 672). The characteristics of the air-void system of all concretes were determined in accordance with ASTM C 457. With no exception, all samples withstood, without any significant deterioration, 300 cycles of freezing and thawing in water. However, the loss of mass after 50 cycles in the presence of a deicer salt solution ranged between 2 and 18 kg/mý (i.e., higher than the usual 1 kg/mý limit in all cases), even if most of the spacing factor values were below 250 æm. The best results (a weight loss of approximately 2 kg/mý after 50 cycles) were obtained for a mix containing Type 10 cement and no air-entraining admixture. In addition, this mix was not cured at all. Overwoking of the concrete surface during compaction is considered to be one of the possible explanations for the discrepancy between the results of the C 666 and the C 672 tests. It is also possible that the relationship between spacing factor and freeze-thaw durability does not apply to such concretes with a high permeability, numerous irregularly shaped compaction air voids, and large porous zones in the paste. This series of tests is the first phase of a 3-year research project on roller-compacted concrete pavements at Laval University, in collaboration with Canada Cement Lafarge. In the second and third years of this project, various ways to improve the scaling resistance (mostly by micro structural changes) will be studied.
10.14359/2504
SP122-01
Bryant Mather
Concrete will be immune to the effects of freezing and thawing if: 1) it is not in an environment where freezing and thawing take place, i.e., where freezable water may be present in the concrete; 2) there are no pores in the concrete large enough to hold freezable water when freezing takes place (i.e., no capillary cavities); 3) during freezing of freezable water, the pores containing freezable water are never more than 91 percent filled, i.e., not critically saturated; 4) during freezing of freezable water, the pores containing freezable water are more than 91 percent full and the paste has an air-void system with an air bubble located not more than 0.2 mm (0.008 in.) from anywhere (L ó 0.2 mm), sound aggregate, and moderate maturity. Sound aggregate is aggregate that does not contain significant amounts of accessible capillary pore space that is likely to be critically saturated when freezing occurs. The way to establish that such is the case is to subject properly air-entrained, properly mature concrete, made with the aggregate in question, to an appropriate laboratory freeze-thaw test, such as ASTM C 666, Procedure A. Moderate maturity means that the original mixing water-filled space has been reduced by cement hydration so that the remaining capillary porosity that can hold freezable water is a small enough fractional volume of the paste so that the expansion of the water on freezing can be accommodated by the air-void system.
10.14359/2418
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer