ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 25 Abstracts search results
Document:
SP122-08
Date:
June 1, 1990
Author(s):
Kamal H. Khayat, Ben C. Gerwick, Jr. and Weston T. Hester
Publication:
Symposium Papers
Volume:
122
Abstract:
The underwater placement of small concrete volumes for repair operations necessitates that the fresh concrete be highly resistant to water erosion and segregation, as well as self-compacting and self-leveling. The hardened concrete must develop high wear resistance and excellent adhesion to underlying surfaces and reinforcing steel. Four potential repair concretes and one conventional tremie mixture were cast underwater in small and relatively shallow depressions using tremie pipes. Research findings indicate that an anti-washout admixture should be used to minimize the risks of water dilution and segregation and to enhance the spreadability and leveling of underwater-cast concrete. Proven concrete mixtures recommended in this research can produce relatively flat repair surfaces with in-place compressive strength in excess of 8000 psi (55.2 MPa) and relative density close to 100 percent of similar values for concrete cast and consolidated above water. Bond strength close to 400 psi (2.8 MPa) can develop between underwater-cast concrete and neighboring concrete repair surfaces.
DOI:
10.14359/2484
SP122-13
J. Marchand,M. Pigeon, H. L. Isabelle, and J. Boisvert
Twenty roller-compacted concrete loads were cast at St. Constant near Montreal during the fall of 1987. Three types of cement (Canadian Types 10, 30, and 10SF), four different aggregate gradings, and three water-cement ratios (0:27, 0:33, and 0:35) were used to prepare the various mixes. Most of these mixes contained an air-entraining admixture. Approximately one-third of each concrete surface was moist-cured for 7 days, another third was covered with a white curing compound, and the remaining portion was not cured at all. Samples representative of all mixes and all curing conditions were taken from the pavement after 28 days and then tested for freeze-thaw durability (ASTM C 666) and deicer salt scaling resistance (ASTM C 672). The characteristics of the air-void system of all concretes were determined in accordance with ASTM C 457. With no exception, all samples withstood, without any significant deterioration, 300 cycles of freezing and thawing in water. However, the loss of mass after 50 cycles in the presence of a deicer salt solution ranged between 2 and 18 kg/mý (i.e., higher than the usual 1 kg/mý limit in all cases), even if most of the spacing factor values were below 250 æm. The best results (a weight loss of approximately 2 kg/mý after 50 cycles) were obtained for a mix containing Type 10 cement and no air-entraining admixture. In addition, this mix was not cured at all. Overwoking of the concrete surface during compaction is considered to be one of the possible explanations for the discrepancy between the results of the C 666 and the C 672 tests. It is also possible that the relationship between spacing factor and freeze-thaw durability does not apply to such concretes with a high permeability, numerous irregularly shaped compaction air voids, and large porous zones in the paste. This series of tests is the first phase of a 3-year research project on roller-compacted concrete pavements at Laval University, in collaboration with Canada Cement Lafarge. In the second and third years of this project, various ways to improve the scaling resistance (mostly by micro structural changes) will be studied.
10.14359/2504
SP122-16
John A. Bickley
Paper reports the results of part of a program to determine the extent and severity of carbonation in buildings in Canada. About 350 core samples drilled from 28 buildings in Toronto were tested by two procedures to determine the depth of carbonation. Tests were made on cast-in-place balconies and vertical components and on precast cladding. A proportion of the total sample was found to be susceptible to carbonation damage within a reasonable service life.
10.14359/2512
SP122-20
Charles J. Hookman
The No. 1 ore dock at Great Lakes Steel Division's Zug Island facility was originally constructed in 1909. Damage caused by freeze-thaw cycling, abrasion wear, severe impact loadings, and reinforcing steel corrosion resulted in a need for repair and rehabilitation. Multiple Dynamics Corporation conducted extensive condition surveys and testing to develop repair strategies for this structure. The remaining service life was then predicted to assist in economic planning. This case history provides an excellent example of concrete performance in an aggressive environment.
10.14359/3407
SP122-21
Alexander M. Vaysburd
During the 12 years since construction of the bridge, cracking and spalling have developed in the concrete superstructure, predominantly on the underside of the bridge deck in the area of expansion and construction joints. The evidence indicates the deterioration was initiated by leakage of expansion and construction joints, and that poor performance should be attributed to design and construction practices whose effectiveness falls short of the environmental demands. Moisture, deicing salts, and debris that spill through the joints had deteriorated concrete at an accelerated rate and penetrated to the reinforcing steel. The concrete breakdown caused by corrosion of reinforcing steel, as well as from freezing and thawing action, and the expansion resulting from alkali-aggregate reaction damaged the bearing areas of cantilever spans and adjacent parts of suspended slabs, and was a cause for concern for the bridge's structural integrity. The paper addresses the main factors involved in the initiation phase of the corrosion mechanism: carbonation, chloride diffusion, and water penetration into concrete. The selected materials and methods are discussed, as well as importance of compatibility of materials for durable repairs. The paper outlines a need to integrate knowledge and understanding of the mechanism of deterioration with concrete design, materials, and methods of repairs.
10.14359/3412
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer