International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 25 Abstracts search results

Document: 

SP122-08

Date: 

June 1, 1990

Author(s):

Kamal H. Khayat, Ben C. Gerwick, Jr. and Weston T. Hester

Publication:

Symposium Papers

Volume:

122

Abstract:

The underwater placement of small concrete volumes for repair operations necessitates that the fresh concrete be highly resistant to water erosion and segregation, as well as self-compacting and self-leveling. The hardened concrete must develop high wear resistance and excellent adhesion to underlying surfaces and reinforcing steel. Four potential repair concretes and one conventional tremie mixture were cast underwater in small and relatively shallow depressions using tremie pipes. Research findings indicate that an anti-washout admixture should be used to minimize the risks of water dilution and segregation and to enhance the spreadability and leveling of underwater-cast concrete. Proven concrete mixtures recommended in this research can produce relatively flat repair surfaces with in-place compressive strength in excess of 8000 psi (55.2 MPa) and relative density close to 100 percent of similar values for concrete cast and consolidated above water. Bond strength close to 400 psi (2.8 MPa) can develop between underwater-cast concrete and neighboring concrete repair surfaces.

DOI:

10.14359/2484


Document: 

SP122-20

Date: 

June 1, 1990

Author(s):

Charles J. Hookman

Publication:

Symposium Papers

Volume:

122

Abstract:

The No. 1 ore dock at Great Lakes Steel Division's Zug Island facility was originally constructed in 1909. Damage caused by freeze-thaw cycling, abrasion wear, severe impact loadings, and reinforcing steel corrosion resulted in a need for repair and rehabilitation. Multiple Dynamics Corporation conducted extensive condition surveys and testing to develop repair strategies for this structure. The remaining service life was then predicted to assist in economic planning. This case history provides an excellent example of concrete performance in an aggressive environment.

DOI:

10.14359/3407


Document: 

SP122-21

Date: 

June 1, 1990

Author(s):

Alexander M. Vaysburd

Publication:

Symposium Papers

Volume:

122

Abstract:

During the 12 years since construction of the bridge, cracking and spalling have developed in the concrete superstructure, predominantly on the underside of the bridge deck in the area of expansion and construction joints. The evidence indicates the deterioration was initiated by leakage of expansion and construction joints, and that poor performance should be attributed to design and construction practices whose effectiveness falls short of the environmental demands. Moisture, deicing salts, and debris that spill through the joints had deteriorated concrete at an accelerated rate and penetrated to the reinforcing steel. The concrete breakdown caused by corrosion of reinforcing steel, as well as from freezing and thawing action, and the expansion resulting from alkali-aggregate reaction damaged the bearing areas of cantilever spans and adjacent parts of suspended slabs, and was a cause for concern for the bridge's structural integrity. The paper addresses the main factors involved in the initiation phase of the corrosion mechanism: carbonation, chloride diffusion, and water penetration into concrete. The selected materials and methods are discussed, as well as importance of compatibility of materials for durable repairs. The paper outlines a need to integrate knowledge and understanding of the mechanism of deterioration with concrete design, materials, and methods of repairs.

DOI:

10.14359/3412


Document: 

SP122-22

Date: 

June 1, 1990

Author(s):

D. Bjegovic, V. Ukraincik, and Z. Beus

Publication:

Symposium Papers

Volume:

122

Abstract:

A characteristic example of reinforced concrete structural damage in an urban environment after 25 years' service is the east end of a stadium in Zagreb, Yugoslavia, for 11,000 spectators. This paper presents research works that served as a basis for the design of repairs to prolong the structure's service life. The damage is classified by types. The basic causes of the damage are explained with a detailed description of the influence of carbon dioxide from the air on the concrete. The repair design is described. The basic principle in repairing the upper and lower surface of the stand was that the materials and construction methods must be compatible with the existing concrete and also meet durability criteria. The repair design prescribes conditions for the materials, construction methods, and durability criteria. The paper presents preliminary investigations to select the optimum composition of a mortar that complies with the criteria required by the design. The influence of two polymer dispersions based on acryl and latex, as well as the influence of silica fume added to the mortar, are investigated. To repair the stand slab, the selected mortar applied was the cement mortar modified by added silica fume and superplasticizer to obtain a dense and compact composition and increased chemical resistance. The proposed solution for the lower surface was shotcrete improved by special admixtures. In designing the overlay, care was exercised that the additional load should not require strengthening of the stand structure. Acceptance of the repair work performed is outlined.

DOI:

10.14359/3418


Document: 

SP122-04

Date: 

June 1, 1990

Author(s):

C. Andrade, C. Alonso, I. Rz-Maribona, and M. Garcia

Publication:

Symposium Papers

Volume:

122

Abstract:

The air or oxygen permeability of concrete is usually measured by means of techniques that utilize mechanical driving forces. Thus, air or oxygen is forced to pass through a piece of concrete using different mechanical pressures. The flow of gas so measured is used as an indication of concrete permeability and sometimes is also used to predict the durability of concrete reinforcements based on the relationship between anodic corrosion rate and amount of oxygen, which may be reduced in the cathodic areas. However, this extrapolation may lead to erroneous conclusions, because a dry concrete allows a higher amount of oxygen to pass through it than a wet one, although the corrosion rate should be much lower in dry than in wet concrete. In this paper, comparisons between flow of oxygen measured in paste, mortar, and concrete specimens held at different relative humidities using electrochemical driving forces (polarization at about -750 mV SCE), and corrosion rates (measured by means of polarization resistance) are presented to discuss the inherent relationships. The results show that the oxygen permeability is only dependent on the amount of electrolyte inside the pores, but the corrosion rate is also dependent on the concrete resistivity, which is fixed by the amount of pore water content.

DOI:

10.14359/2453


12345

Results Per Page 




Edit Module Settings to define Page Content Reviewer