ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 25 Abstracts search results
Document:
SP122-10
Date:
June 1, 1990
Author(s):
S. Somayaji, D. Keeling, and R. Heidersbach
Publication:
Symposium Papers
Volume:
122
Abstract:
Report presents the results of a multi-year laboratory exposure of more than 150 concrete samples to alternate immersion exposure in flowing sea water and flowing fresh water. Other exposure variables included loading, cracking, and electric currents. The validity of the controlled-exposure samples was determined by comparing the results with the results from selected samples removed from concrete structures throughout the United States. The results from a marine seawall are presented in this report and compared with previously reported results from marine masonry structures, highway bridges, and other structures.
DOI:
10.14359/3731
SP122-12
Joseph F. Lamond and M. K. Lee
The ultimate test of concrete durability to natural weathering is how it performs in the environment in which it is to serve. Laboratory testing yields valuable indications of service life and durability. However, the potential disrupting influences in nature are so numerous and variable that actual field exposures are highly desirable to assess the durability of concrete exposed to natural weathering The U.S. Army Corps of Engineers, through the Waterways Experiment Station, Structures Laboratory, maintains a natural weathering exposure station. It is located on Treat Island in Cobscook Bay near Eastport, Maine. This station has been in use since 1936 and is an ideal location for exposure tests, providing twice-daily tide reversals and severe winters. The average tidal range is about 18 ft (5.4 m) with a maximum of 28 ft (8.5 m) and a minimum of 13 ft (4 m). In the winter, the combined effect of air and water temperatures creates a condition at meantide where specimens are repeatedly thawed and frozen. There have been 23 completed investigations and many of these have been previously reported. There are currently 40 active investigations. Four of these investigations are briefly discussed in this paper.
10.14359/3739
SP122-19
Randall W. Poston and Morris Schupack
An investigation was conducted to assess the structural integrity of a 17-year-old precast prestressed concrete conveyor bridge used to transport sodium chloride rock salt from a storage building to an outside stockpile area. The stockpile, depending on storage requirements, quite often buried most of the structure and/or subjected it to sodium chloride dust. The investigation revealed that the structure had performed remarkably well, considering the small concrete cover used to protect the reinforcing elements and the inadequate consideration of structural cracking induced by unanticipated loading from stockpiled salt. The concrete strength of the single tee members was estimated to be 7000 psi (48 MPa), with cover to the stirrups varying from virtually 0 to 1 1/2 in. (0 to 38 mm) and cover to the prestressing strands varying from 3/4 to 2 in. (19 to 51 mm). It was observed that aggressive prestressing strand corrosion causing pitting and some brittle wire failures occurred locally at flexural crack locations in single tee column members with little corrosion activity immediately adjacent to the cracks, even after 17 years of aggressive chloride exposure. This observation seems to conflict with the prevailing theory of the role of cracking on corrosion--that cracks perpendicular to steel reinforcement should result in limited early localized corrosion but, with time, chloride ions penetrate even uncracked concrete and initiate widespread corrosion.
10.14359/2852
SP122-17
Charles F. Kulpa and Cassandra J. Baker
When anaerobic conditions occur in a sewer pipe in the presence of sulfate, sulfur-reducing bacteria will produce hydrogen sulfide. As hydrogen sulfide is released, various populations of sulfur-oxidizing bacteria (thiobacilli), will proliferate. The proliferation of these organisms results in a decrease in pH due to the production of sulfuric acid. Different thiobacilli will be present depending on the pH of the environment. Samples from regions of deteriorated and nondeteriorated concrete pipe were taken to determine the presence of microorganisms that could cause microbially induced concrete deterioration. The results presented show that the degree of concrete deterioration can be correlated with the number and type of thiobacilli present. Extensive deterioration was observed at the crown of reinforced and asbestos concrete pipe, where the most acidophilic group of thiobacilli were present in elevated numbers. Areas of lesser deterioration were somewhat acidic, with a combination of different sulfur-oxidizing thiobacilli present. Areas that did not appear to be deteriorated were populated with the least acidophilic group of sulfur-oxidizing thiobacilli. The presence of microbially induced deterioration of concrete and the stage of deterioration can be determined by utilizing selective media to culture the various groups of sulfur-oxidizing bacteria associated with concrete decay.
10.14359/2534
SP122-18
S. Gebler, P. Nussbaum, W. Dziedzic, J. Glikin, A. Litvin, W. Bilenki, Jr., and J. Stefanik
Two concrete natural draft cooling towers exhibited honeycombing and freeze-thaw damage. This paper presents results of inspections and laboratory and field tests used to develop cooling tower rehabilitation repair strategies. Different repair materials were evaluated and tested in the laboratory. The repair strategy selected involved measures to dry out the marginally air-entrained saturated tower shell concrete to minimize future freeze-thaw damage and then replace concrete exhibiting honeycombing and condensate leakage with dry-mix shotcrete (gunite). The interior concrete shell was then coated with an impermeable membrane. Six materials for coating the interior shell concrete and two types of shotcrete processes were evaluated.
10.14359/2540
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer