ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 25 Abstracts search results
Document:
SP122-23
Date:
June 1, 1990
Author(s):
David J. Akers
Publication:
Symposium Papers
Volume:
122
Abstract:
Reinforced concrete masonry structures can be effectively used in corrosive environments provided that the design is based upon a rational assessment of the exposure condition. An investigation of wall that had 6000 g of muriatic acid and 11,000 g of sodium hypochlorite stored along its exterior face indicated accelerated deterioration of the wall due to inadequate design and no protection afforded to the wall when the building's usage was changed from general warehouse to chemical storage. Poor construction practices also contributed to the distressed condition. The investigation utilized electrical, visual, and chemical means of assessing the structures's condition. The primary tool was a copper-copper sulfate (Cu-CuSO4) half cell conforming to ASTM C 876. The resulting equipotential contour map provided valuable information regarding the wall's corrosion potential. Visual observations of exposed, corroded reinforcing steel confirmed the half-cell readings. Chemical analysis of block, mortar, and grout samples extracted from the wall revealed high but inconsistent water-soluble chloride ion contents.
DOI:
10.14359/3754
SP122-24
Mohammed Maslehuddin
The service conditions for concrete construction in the coastal areas of the Arabian Gulf are considered to be those of one of the most aggressive environments in the world. Deterioration of hardened cement paste due to salt attack is one of the leading reasons for poor performance of concrete structures in this region. Calcium, magnesium, sodium salts of sulfates, chlorides, and carbonates extensively contaminate the ground, groundwater, and the aggregates. In such an environment, structures built with concrete which can be rated as good in temperate climatic conditions can hardly last for a decade or two. Field and laboratory studies are in progress at King Fahd University of Petroleum and Minerals at Dhahran, Saudi Arabia, to formulate preventive measures. As a part of this endeavor, the performance of in-service concrete structures is monitored. This paper details the investigations carried out to evaluate the performance of these concrete structures. Data developed in this investigation show that the aggressive service environment is the major cause for concrete deterioration, as such appropriate mix design techniques and construction practices are to be adopted for the production of a very dense and impermeable concrete.
10.14359/3764
SP122-01
Bryant Mather
Concrete will be immune to the effects of freezing and thawing if: 1) it is not in an environment where freezing and thawing take place, i.e., where freezable water may be present in the concrete; 2) there are no pores in the concrete large enough to hold freezable water when freezing takes place (i.e., no capillary cavities); 3) during freezing of freezable water, the pores containing freezable water are never more than 91 percent filled, i.e., not critically saturated; 4) during freezing of freezable water, the pores containing freezable water are more than 91 percent full and the paste has an air-void system with an air bubble located not more than 0.2 mm (0.008 in.) from anywhere (L ó 0.2 mm), sound aggregate, and moderate maturity. Sound aggregate is aggregate that does not contain significant amounts of accessible capillary pore space that is likely to be critically saturated when freezing occurs. The way to establish that such is the case is to subject properly air-entrained, properly mature concrete, made with the aggregate in question, to an appropriate laboratory freeze-thaw test, such as ASTM C 666, Procedure A. Moderate maturity means that the original mixing water-filled space has been reduced by cement hydration so that the remaining capillary porosity that can hold freezable water is a small enough fractional volume of the paste so that the expansion of the water on freezing can be accommodated by the air-void system.
10.14359/2418
SP122-02
P. K. Mehta
The commercial utilization of high-strength concrete with 60 to 120 Mpa compressive strength is a recent phenomenon; therefore, long-term field experience with regard to durability in corrosive environments is not available. In this paper, a critical review of the factors necessary to obtain high strength and high durability is presented. Typically, the concrete mixtures contain high cement content, low water content, and several admixtures, such as a superplasticizer, a pozzolan, and at times an air-entraining agent. When properly placed, consolidated, and cured, such mixtures should have low permeability and high durability to corrosive environments. However, there is some concern that microcracking in the aggregate-cement paste transition zone, possibly due to a variety of causes, may impair the impermeability and durability. The results of a recent investigation are discussed, which show that the aggregate type can play an important role in controlling the strength of the transition zone and, therefore, the degree of potential microcracking of concrete in service.
10.14359/2428
SP122-09
Lewis H. Tuthill
Long service life of concrete depends on correct choice and use of materials. Problems such as ASR (alkali silica reaction) and the prospect of sulfate attack and corrosion need early and proper identification and attention. Resistant materials must be selected and properly used to insure control of these adverse conditions. Low alkali cement or sulfate-resisting cement must be used as appropriate in these situations. Other requirements often overlooked are those essential to prevent or minimize thermal cracking of massive structural concrete, as in power plants, bridge piers, foundation elements, and thick linings of large tunnels. The ordinary concrete in municipal use, especially in new subdivisions, is often short of durability and exhibits much cracking, due to failure to follow the most fundamental rules of good practice, especially freezing weather protection, enough cement, control of slump, ample provision of joints, and curing. Sidewalks and driveways are too often disfigured and disappointing. Curing is often neglected. Specifications for the work must cite the requirements in complete detail and be followed explicitly when the work is done.
10.14359/2440
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer