International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 14 Abstracts search results

Document: 

SP118-13

Date: 

January 1, 1990

Author(s):

Arne Hillerborg

Publication:

Symposium Papers

Volume:

118

Abstract:

The stress-deformation relation now generally accepted for tensile fracture, i.e., with the descending branch described by means of a stress-displacement relation in a localized band, has been applied to the compressive stresses in a bent, reinforced beam. The displacement in this band is averaged over a length, which is proportional to the depth of the compression zone. The resulting average stress-strain relation, which is strongly size-dependent, is used for the analyses of the stresses in a rectangular beam section, and for the corresponding moment-curvature relationship. The results differ appreciably from those from conventional assumptions. The new approach shows a better agreement with test results than the conventional approach. Further test comparisons are, however, recommended. The new approach may form the basis of changed design assumptions, particularly for high-strength concrete.

DOI:

10.14359/2983


Document: 

SP118-02

Date: 

January 1, 1990

Author(s):

R. J. Ward, K. Yamanobe, V. C. Li, and S. Backer

Publication:

Symposium Papers

Volume:

118

Abstract:

Results of notched beam, direct tension, splitting tension, compression, shear beam, and flexural tests on plain mortar and on mortar reinforced with different volume fractions of short acrylic fibers are reported. An indirect J-integral technique is employed to determine the tension-softening curve and thus the tensile strength, the fracture energy, and the critical crack opening from the notched beam test results. As the volume fraction of fibers is increased, the strength in shear and flexure, the fracture energy, and the critical crack opening all increase, the tensile strength remains essentially constant, and the compressive strength shows some reduction. The characteristic length lch is used as a material property to characterize the post-peak tensile behavior. The shear and flexural strengths are related to the normalized dimension d/lch, and good agreement between the experimental results and theoretical predictions of decreasing strength with increasing d/lch is found.

DOI:

10.14359/2878


Document: 

SP118

Date: 

January 1, 1990

Author(s):

Editors: Victor C. Li and Zdenek P. Bazant

Publication:

Symposium Papers

Volume:

118

Abstract:

SP-118 This Special Publication of 13 papers presents advances in fracture mechanics involving characterization, resistance measurements, computation tools, and material toughness. The document is divided into two sections. One section deals with the application of fracture mechanics to cementitious materials. The other section covers the application of fracture mechanics to concrete structures.

DOI:

10.14359/14151


Document: 

SP118-01

Date: 

January 1, 1990

Author(s):

Victor c. Li

Publication:

Symposium Papers

Volume:

118

Abstract:

Reviews the tensile failure of concrete structures subjected to a variety of practical loading. Attention is focused on the propensity of fracture failure of concrete structures and the fracture properties of cementitious materials. The relevance of fracture mechanics to modern concrete design code is highlighted.

DOI:

10.14359/2908


Document: 

SP118-03

Date: 

January 1, 1990

Author(s):

C. Vipulanandan and N. Dharmandan

Publication:

Symposium Papers

Volume:

118

Abstract:

Fracture behavior of epoxy and polyester polymer concrete (PC) systems are investigated in Mode I fracture using single-edge notched beams with varying notch depths. The beams were loaded in four-point bending. Influence of polymer content on the fracture behavior of epoxy PC andpolyester PC at room temperature was studied using uniform Ottawa 20-30 sand. The polymer content was varied between 10 and 18 percent of the total weight of the composite. The flexural strength of the polymer concrete systems increase with increase in polymer content while the flexural modulus goes through a maximum. The critical stress intensity factor KIC was determined by two methods, including a method based on crack mouth opening displacement. At the same polymer content, the epoxy PC has a higher fracture toughness than polyester PC. The KIC for epoxy PC and polyester PC increases with increase in polymer content and PC flexural strength. The critical stress intensity factor of PC is represented in terms of polymer content and polymer strength. Numerical tests based on random sampling and stratified sampling procedures were performed to substantiate the experimentally observed fracture toughness values of polymer concrete.

DOI:

10.14359/2921


123

Results Per Page 




Edit Module Settings to define Page Content Reviewer