International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 7907 Abstracts search results

Document: 

SP366

Date: 

October 3, 2025

Author(s):

ACI Committee 222

Publication:

Symposium Papers

Volume:

366

Abstract:

Professor Carolyn Hansson’s remarkable journey began in England, during the turbulence of the Second World War. Despite the hardships of wartime and the limitations imposed by rationing, Carolyn was raised in a nurturing environment by parents who instilled in her a deep respect for learning and perseverance. These values would guide her through an exceptional academic and professional life. As the sole woman at the Royal School of Mines, Carolyn studied metallurgy at Imperial College, where she later earned her PhD, focusing on superconductivity and crystal structures at liquid helium temperatures. Her postdoctoral path led her from industrial research at Martin Marietta Laboratories to academic positions at Columbia University and the State University of New York at Stony Brook, and later to Bell Laboratories in 1976. Her pivotal shift into corrosion science began in 1980 at the Danish Corrosion Centre, where she worked on a new type of cement and corrosion of steel in concrete. From Denmark to Canada, Professor Hansson continued her research at Queen’s University and later at the University of Waterloo, building an enduring legacy in the field of steel corrosion in concrete structures. Over the decades, Carolyn’s contributions to corrosion research have shaped and guided generations of engineers and scientists. Her pioneering studies—on electrical resistivity of concrete, quantifying reinforcement corrosion rates, and understanding the complex role of chlorides—remain foundational in the field. Her investigations into corrosion inhibitors, electrochemical chloride extraction, effects of concrete cracking on reinforcement corrosion, and corrosion-resistant steels continue to influence global practices in infrastructure resilience. This Special Publication celebrates more than 60 years of Professor Hansson’s contributions as a scientist, educator, and mentor. The papers collected here, presented at the 2025 Spring Convention in Toronto, reflect not only the lasting relevance of her work but also its future promise. Her vision stands as both a mirror to the past and a beacon for innovations yet to come in corrosion-resistant construction. O. Burkan Isgor David Tepke Ceki Halmen Neal Berke

DOI:

10.14359/51749242


Document: 

SP366_11

Date: 

October 1, 2025

Author(s):

Ceki Halmen, David Trejo, Momn Telfah

Publication:

Symposium Papers

Volume:

366

Abstract:

Corrosion of reinforcement is a common deterioration problem for reinforced concrete structures at coastal areas causing early failure, increased maintenance costs, and significant safety problems. This paper combines a wellestablished diffusion-based service life estimation method with recently developed data-driven models on surface chloride concentration accumulation and critical chloride threshold distribution data to probabilistically analyze the effect of design parameters such as water-cement ratio (w/c), cover depth, and admixed chloride content in various coastal exposure zones. Results indicate that the used probabilistic analysis can result in changes to estimated service life values by an order of magnitude. Although w/c and cover depth were the most significant factors affecting the service life, parameters such as wind speed, temperature, exposure zone, and distance from the coast were identified as influencing the service life of coastal structures.

DOI:

10.14359/51749239


Document: 

SP366_12

Date: 

October 1, 2025

Author(s):

Carmen Andrade

Publication:

Symposium Papers

Volume:

366

Abstract:

Concrete is an efficient material in terms of mechanical strength and functionality, but whose durability is one of present challenges that need particular attention to preserve the reinforcement absent of corrosion during the nominal service life. Present trends on modelling by performance make more complex the quality control testing and lengthens the characterization of new low carbon cement concretes. In present work is presented concrete resistivity as the single parameter able to characterize both corrosion periods through the corresponding mathematical expressions. Resistivity is a non-destructive test which could qualify concrete from its early ages. Based in the relation between diffusivity-corrosion current and resistivity, an integral model based in the resistivity measured at short term in the same specimens than mechanical strength (cured humid), is described. It is also analysed the analogies between the diffusivity and corrosion current and the influence of climate in the resistivity for future challenge of predicting the impact of climatic change.

DOI:

10.14359/51749240


Document: 

SP366_03

Date: 

October 1, 2025

Author(s):

Mohaddeseh Abdolhosseini and Ibrahim G. Ogunsanya Synopsis:

Publication:

Symposium Papers

Volume:

366

Abstract:

To overcome the time- and resource-intensive electrochemical assessments used to evaluate the pitting corrosion resistance of stainless steel (SS) rebar alloys, a non-destructive assessment tool such as the Pitting Resistance Equivalent Number (PREN) index is important for decision-making involving building resilient engineering structures. By addressing the limitations of the existing PREN index, initially designed for SS alloys in hightemperature acidic or neutral environments, this study sought to develop a PREN index tailored for highly alkaline ambient-temperature concrete environments through a combination of electrochemical experimental analysis and machine learning modelling. This integrated approach and newly developed PREN index account for variations in SS alloying composition, concrete alkalinity, and environmental exposure conditions, addressing the growing demand for non-destructive, time- and cost-effective, and reliable alternatives for assessing SS rebar corrosion performance. Developed PREN will aid design of new and selection of existing SS alloys for reinforced concrete structures across diverse localities and applications. Two major formulas were reported, one for electrochemical parameters and the other for PREN related to these electrochemical parameters, each establishing their relationship with major SS alloying elements (i.e., Cr, Ni, Mo, Mn), concrete type (i.e. pH of testing solution), and concentration of deleterious species in exposure environment (i.e. chloride, sulphate). This study marks an initial step toward developing a non-destructive corrosion-performance assessment tool for civil engineering applications.

DOI:

10.14359/51749231


Document: 

SP366_04

Date: 

October 1, 2025

Author(s):

Jose Pacheco and Kyle Stanish

Publication:

Symposium Papers

Volume:

366

Abstract:

ACI Committee 365 published a new Design Specification in 2024. The Design Specification was developed to provide requirements to the Service Life Engineer, a specialty engineer focused on durability, for performing service life predictions of new structures. The Service Life Engineer is responsible for predicting the service life performance of concrete elements and developing requirements for the verification of the service life prediction during construction. The Service Life Report, developed during or prior to construction, and a Service Life Record Report, delivered at the completion of construction, are deliverables prepared by the Service Life Engineer at the completion of the project. The requirements of the Design Specification aim to provide consistency to the practice of service life prediction of new concrete structures. The technical requirements for performing service life predictions following the Design Specification are discussed in this paper.

DOI:

10.14359/51749232


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer